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Alwhrct-The prehistory of spectral estimation has its mots in an- 
cient  times  with  the  development  of  the  calendar  and  the  clock  The 
work of F’ythagom in 600 B.C. on the  laws  of  musical  harmony  found 
mathematical  expression  in  the  eighteenth century in  terms  of  the  wave 
equation.  The s t r u e  to understand  the solution of the wave  equation 
was fh l ly  resolved by  Jean Baptiste Joseph de Fourier  in 1807 with 
his introduction of the Fourier series The  Fourier  theory  was ex- 
tended to the case of arbitrary orthogollpl functions by S t m n  and 
Liowille  in 1836. The Stum+Liouville theory led to the greatest 
empirical sum of spectral analysis yet obbhed, namely  the  formulo 
tion  of  quantum  mechnnics as given by Heisenberg and SchrMngm in 
1925 and 1926. In 1929 John von Neumann put  the spectral theory  of 
the  atom  on a Turn mathematical  foundation  in his spectral represent, 
tion  theorm in Hilbert space. Meanwhile,  Wiener  developed the mathe- 
matical  theory  of Brownian mavement  in 1923, and  in 1930 he in- 
duced genernlized  harmonic  analysis, that is, the spectral repreaentation 
of a stationuy random process The  cOmmon  ground of the spectral 
repreaentations  of von Neumm and  Wiener is the Hilbert space; the 
von N e u m m  result is for a Hermitian operator,  whereas  the  Wiener 
result is for a unitary  operator. Thus these two spectral representations 
are dated by the Cayley-MBbius transformation. In 1942 Wiener a p  
plied  his  methods to problems  of  prediction  and filtering, and his work 
was  interpreted  and  extended  by Norman Levinson. Wiener  in his 
empirical  work put m m  emphasis  on the autocorrelation  function 
than on the power spectrum 

The  modern  history  of spectral eaimation begins with  the break- 
through of J. W. Tukey  in 1949, which is the statistical  counterpart of 
the breakthrough of  Fourier 142 years earlier. This  result  made pos 
sible  an  active  development  of  empirical spectral analysis  by research 
workers in dl scientifii  disciplines However, spectral analysis  was 
computationally  expensive. A major  computational breakthrough oc- 
curred  with  the  publication  in 1965 of the  fast  Fourier transform dge 
rithm  by  J. S. Cooley  and J. W. Tukey.  The  Cooley-Tukey  method 
made it practical to do signal pmcessiy on waveforms  in  either  the 
time or the  frequency  domain,  sometlung  never  practical  with  con- 
tinuous systems. The  Fourier trpnaOrm became not  just a theoretical 
description, but a t o d  With  the  development  of  the  fast  Fourier tram 
form the feld of  empirical .spectral analysis  grew from obscurity to 
importance,  and is now a major  discipline.  Further  important  contribu- 
tions were the introduction of  maximum  entropy spectral analysis  by 
John Burg in 1967, the  development  of spectral windows  by  Emmanuel 
Parzen  and  others starting in  the 195O’s, the s t a t i s t i c a l  work  of  Maurice 
Priestley  and his shod,  hypothesis  testing  in  time series analysis  by 
Peter  Whiffle startiug in 1951, the  Box-Jenkins  approach  by George 
Box and G. M. Jenkins  in 1970, and autorepshe spectral estimation 
and  order-determining  criteria  by E. Parzen  and H. Akaike starting in 
the 1960’9 To these  statistical  contributions  must be added the  equdly 
important  engineering  contributions to empirid spectrum analysis, 
which are not treated at dl in  this  paper,  but  form  the subject matter 
of  the other papen in this special issue. 

I. INTRODUCTION s PECTRAL estimation has its roots in ancient times, with 
the  determination of the  length of the day, the phases of 
the  moon, and the  length of the year. The calendar and 

the clock resulted from empirical  spectral analysis. In modem 
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times, credit for  the empirical discovery of spectra goes to  the 
diversified genius of Sir Isaac Newton [ 11. But the great in- 
terest in spectral analysis made its appearance  only  a little 
more than a century ago. The prominent German chemist 
Robert Wilhelm Bunsen (18 1 1-1899) repeated Newton’s 
experiment of the glass prism. Only Bunsen did not use the 
sun’s rays as Newton did. Newton  had found  that a  ray of 
sunlight is expanded into a  band of many colors, the  spectrum 
of the rainbow.  In Bunsen’s experiment,  the role of pure sun- 
light was replaced by  the burning of an old rag that had been 
soaked in a  salt solution (sodium chloride). The beautiful rain- 
bow of Newton did not appear. The  spectrum, which Bunsen 
saw, only  exhibited  a few narrow lines, nothing more. One of 
the lines was a  bright yellow. 

Bunsen conveyed this result to Gustav Robert Kirchhoff 
(1824-1887),  another well-known German scientist.  They 
knew that  the role of the glass prism consisted only in sorting 
the  incident rays of light into  their respective wavelengths (the 
process known as dispenion).  The Newton  rainbow was the 
extended  continuous band of the solar spectrum;  it indicates 
that all  wavelengths of  visible light are present in pure sunlight. 
The yellow line, which appeared  when the light source was a 
burning rag, indicated that  the  spectrum of table  salt con- 
tained  a single specific wavelength. Further experiments 
showed that this yellow line belonged to  the element sodium. 
No matter what the substance in which  sodium  appeared, that 
element made its whereabouts known by its bright yellow 
spectral line. As time went on,  it was found  that every chemi- 
cal element has its own characteristic  spectrum,  and that  the 
spectrum of a given element is always the same, no  matter in 
what compound  or substance the element is found.  Thus the 
spectrum identifies the  element, and in this way  we can tell 
what elements are in substances from  the  distant stars to 
microscopic objects. 

The successes of spectral analysis were colossal. However, 
the spectral theory of the elements could not be explained by 
classical physics. As we know, quantum physics was born and 
spectral theory was explained in  1925 and 1926  by  the work 
of Werner Heisenberg (1901-1976) and Erwin Schrijdinger 
(1887-1961).  In  this paper, we  will show  how  spectral theory 
developed in  the  path  to  this great achievement. 

Although most of  the glamour of spectral theory has been 
associated with quantum physics, we  will not neglect the paral- 
lel path  taken  in classical physics. Although the  two paths 
began diverging with the work of Charles Sturm (1803-1855) 
and Joseph Liouville (1809-1882) on  the spectral theory of 
differential  equations, we wiU see that  the final results, namely, 
the spectral  representation of John von Neumann(1903-1957) 
for  quantum physics, and  that of Norbert Wiener (1894-1964) 
for classical physics, are intimately related, 

Because light has high frequencies, our  instruments  cannot 
respond  fast  enough to directly measure the waveforms. In- 
stead, the  instruments measure the  amount of energy in the 
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frequency  bands of interest. The measurement  and analysis 
of the spectra of other  types of signals, however, take different 
forms. With lower  frequency signals, such as mechanical vibra- 
tions,  speech,  sonar signals,  seismic traces, cardiograms, stock 
market  data,  and so on, we can measure the signals as func- 
tions of time  (that is, as time series) and then find the spectra 
by computation. With the advent of the digital computer, 
numerical spectrum estimation has become  an important field 
of study. 

Let us say  a few words about  the terms  “spectrum”  and 
“spectral.” Sir Isaac Newton introduced  the scientific term 
“spectrum” using the Latin word for an image. Today, in 
English, we have the word specter meaning ghost or appari- 
tion, and the corresponding adjective spectral. We also have 
the scientific word spectrum and the  dictionary lists the word 
spectrul as the corresponding adjective. Thus  “spectral” has 
two meanings. Many feel that we should be careful to use 
“spectrum” in place of “spectral” a) whenever the reference 
is to data or physical phenomena,  and b) whenever the word 
modifies “estimation.”  They  feel that  the word “spectral,” 
with  its unnecessary ghostly interpretations, should be con- 
fined to  those usages in a  mathematical discipline where the 
term is deeply embedded. 

The material in this  paper through Section XI1 surveying the 
period from  antiquity  through Levinson and Wiener can be 
described as “The  Prehistory of Spectrum  Estimation” to em- 
phasize that  spectrum estimation is interpreted as estimation 
from data.  The remaining sections may be described as 
“Some Pioneering Contributions to  the Development of Meth- 
ods of Spectrum Estimation.” 

Modem spectrum estimation began with the breakthrough 
for  the analysis of short  time series made by J. W. Tukey in 
1949. This work led to  a  great blossoming forth of spectrum 
analysis techniques. Despite the advances in digital computing 
machinery, such  computations were still expensive. The  next 
great  breakthrough  occurred  with the discovery of the fast 
Fourier  transform in 1965  independently by J. W. Cooley and 
J.  W. Tukey and by Gordon Sande. This development, in con- 
junction with silicon chip  technology, has brought spectrum 
analysis to bear on a wide range of problems. Another break- 
through occurred  with the  introduction of maximumentropy 
methods  into  spectrum analysis by John Burg in 1967. 

11. TAYLOR SERIES 
At the time when calculus was introduced  in  the seventeenth 

century by Newton and Leibnitz, the concept of a  mathe- 
matical “function” entailed  restricted  properties,  which in  the 
course of time were gradually made less severe. In those days, 
the observations of natural events seemed to indicate that con- 
tinuous relations always existed  between physical variables. 
This view  was reinforced by the  formulation of the laws of 
nature  on  the basis  of differential  equations, as exemplified 
by Newton’s laws. Thus it became commonplace to assume 
that  any  function describing physical phenomena would be 
differentiable. The idea of a function  that changes in some 
capricious or random way, and thus does not allow any ana- 
lytic formula for  its representation, did not  enter  into  the 
thinking of the mathematicians of that time. It was thus very 
natural  for Brook Taylor (1 685-1 73  1) [ 21,  a contemporary of 
Newton, t o  introduce  the  concept of “analytic  function.” The 
Taylor series expands an analytic function as an infinite sum- 
mation of component functions. More precisely, the Taylor 
series expands  a function f ( x ) ,  which is analytic  in  the neigh- 

borhood  of a  certain point x = a, into  an  infinite series whose 
coefficients are the successive derivatives of the  function  at  the 
given point 

Thus  analytic functions are functions which can be differenti- 
ated to  any degree. We know  that  the definition of the deriva- 
tive of any  order  at  the  point x = a does not require  more than 
knowledge of the  function  in an  arbitrarily small neighbor- 
hood of the  point x = u. The astonishing property of the 
Taylor series is that  the shape of the  function  at a finite dis- 
tance h from  the  point x = u is uniquely  determined by  the 
behavior of the  function  in  the infinitesimal vicinity of the 
point x = u. Thus the Taylor series implies that an analytic 
function has a very strong  interconnected  structure;  by  study- 
ing the  function  in a small vicinity of the  point x = a, we can 
precisely predict  what  happens at  the  point x =(I + h,  which 
is at a finite distance from  the  point of study. This property, 
however, is restricted to  the class  of analytic  functions.  The 
best known analytic functions are, of course, the sine and 
cosine functions, the polynomials,  and the rational functions 
(away from  their poles). 

111. THE DANIEL BERNOULLI SOLUTION OF THE 
WAVE EQUATION 

The  great Greek mathematician  Pythagoras (ca 600 B.C.) 
was the fmt   t o  consider a  purely physical problem in which 
spectrum analysis made its appearance. Pythagoras  studied the 
laws of musical harmony  by generating  pure  sine  vibrations on 
a vibrating string, fixed at  its  two endpoints. This problem 
excited  scientists since ancient  days, but  the mathematical 
turning  point came in the eighteenth century when it was 
recognized that  the vertical displacement u ( x ,  t )  of the vibrat- 
ing  string satisfies the wave equation 

a2u  1 a Z u  
ax2 c2 at2 
-_- -- - 0. 

Here x is the  horizontal  coordinate and t is the time. The con- 
stant c is a physical quantity characteristic of the material of 
the string, and  represents the velocity of the traveling waves on 
the string. Because the  endpoints x = 0 and x = 71 are  fixed, we 
have the  boundary conditions 

u(0, t )  = u(s ,  t )  = 0. 

(Note  that  for simplicity, we have taken  the string to  be of 
length r.) The problem of constructing the solution of the 
wave equation was then  attacked  by some of the greatest 
mathematicians of all time, and in so doing, they paved the 
way for  the  theory  of  spectrum analysis. 

One of the finest results was that of Daniel Bernoulli (1 700- 
1782)  [3]  in  1738. He introduced  the  method of separation 
of variables in which a  trial  solution is constructed as the 
product  of a function  of x alone, and  a function of t alone. 
Thus,  he wrote 

u ( x ,  t )  = X ( x )  T ( t ) .  

Putting this  trial solution in the differential equation and solv- 
ing, he  found  the solutions 

cos kx cos kcr, cos kx sin kct 

sin kx cos kct, sin kx sin kct. 
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However, the boundary  condition  at x = 0 excludes the solu- 
tions involving cos kx,  and so the possible solutions  are re- 
duced to the  two choices 

sin kx cos kct,  sin kx sin kct. 

The  boundary  condition at x = n requires that  the value  of k 
to be an  integer.  In view of the linearity of the wave equation, 
any  superposition of solutions gives a  solution.  Bernoulli  thus 
gave the following  solution: 

U ( X ,  t )  = sin kX(Ak COS kct + Bk sin kct )  
00 

k=1 

where the A k  and Bk are  arbitrary  constants.  Bernoulli  made 
the claim that  this  infinite  sum is the general solution of the 
equation for the vibrating string. The  implications of Ber- 
noulli’s  claim  were startling.  From the principles of  mechan- 
ics it was known  that  the initial displacement  and  initial 
velocity of the  string could  be  prescribed in  an  arbitrary way. 
That is, it  was known  that at  the initial time t = 0, both u ( x ,  0) 
and & ( x ,  0) could have any  functional  form.  (Note  that the 
dot over a function  indicates  differentiation  with  respect to 
time, so & represents  the velocity of the  string  in  the vertical 
direction.) However,  Bernoulli’s solution gives explicit  expres- 
sions for initial displacement  and  initial  velocity,  namely, 

00 

U ( X ,  0) = x A& sin kx 
k=1 

Thus Bernoulli‘s solution  implied  that  each of two arbitrary 
functions u ( x ,  0) and ti ( x ,  0) could  be  expanded in  the interval 
0 < x  4 n in  the  form of an  infinite series of sine  functions. 
However, this  result  could not be  explicitly  demonstrated in 
Bernoulli’s time. 

Bernoulli’s result can be  expressed in the following way. Let 
the initial displacement u ( x ,  0) be  an  arbitrary  nonanalytic 
function f ( x ) .  Then we  have the  expansion 

f(x) = A& sin kx 
00 

k = 0  

which  says that a  nonanalytic  function f ( x )  can be  expressed 
as an infinite  summation of analytic  functions sin kx with 
weighting coefficients A&. This result was a  paradox at  the 
time,  and it led to a  historical  controversy of whether  the 
function f(x) could  be  freely  chosen or  must be restricted to 
the class of analytic  functions.  From  the  physical  point of 
view, f(x), which is the  initial displacement of the string,  could 
be  freely chosen. From  the  then  contemporary  mathematical 
point of  view, f(x), which is an infinite  summation of analytic 
functions,  must  be  analytic. This view  was  believed by all the 
eminent  mathematicians of the day. 

Two of the greatest  mathematicians  who ever  lived then  set 
out to frnd the coefficients A k  of this expansion. Multiply 
each  side by sin nx and  integrate  between 0 and a. Because 

in sin kx sin  nx dx = I n/2, when k = n 

0, when k # n  

the result found by L. Euler  (1707-1783) [4]  and J. L. La- 

grange (1736-1813) [SI is 
n 

A ,  = 2 J f(x) sin nx dx.  
n 

This is the point at which the  question  stood  at  the  start of the 
nineteenth  century. 

Iv. JEAN BAPTISTE JOSEPH DE FOURIER AND THE 
. SINUSOIDAL  SPECTRAL THEORY 

On December 21, 1807  the engineer Jean  Baptiste  Joseph de 
Fourier  (1768-1830) [ 61  addressed the  French Academy  and 
made  a claim that  appeared incredible to  the eminent  mathe- 
maticians  who were members of the Academy. As it turned 
out,  one of the greatest advances in  the  history of mathematics, 
an innovation which  was to occupy  much of the  attention of 
the  mathematical  community  for over a  century, was made  by 
an  engineer. Fourier said at  that  historic meeting that  an arbi- 
trary  function,  defined over a  finite  interval  by  any  rough  and 
even discontinuous  graph,  could be represented as an  infinite 
summation of  cosine and  sine  functions.  The distinguished 
and  brilliant  academicians  questioned the validity of Fourier’s 
theorem,  for  they believed that  any  superposition of cosine 
and  sine  functions  could  only give an  analytic  function,  that 
is, an  infinitely  differentiable function, An analytic  function, 
of course,  could never  be discontinuous,  and  thus was  very far 
removed from some  arbitrarily  drawn graph. In  fact, Taylor’s 
theorem  stated  that  an  analytic  function  had  the  property  that, 
given its  shape in  an  inffitesimal interval, the  continuation of 
its course to the right  and  left by finite amounts was uniquely 
determined  (the so-called  process of analytic  continuation). 
The  academicians  and the  other great mathematicians of the 
time could not reconcile the  property of analytic  continuation 
with Fourier’s theorem. How could the physical  reasoning of 
an engineer  stand up against the weight  of the  analytic reason- 
ing of some of the most  eminent  mathematicians of all time? 
These  were the days  when  many  great men  were at  the peak 
of their powers. Yet  Fourier  stood  alone in defending his 
theorem. 

As  we have  seen, the  concept of analytic  function  requires 
a  strong  interconnection of the values  of a  function, where 
knowledge at  one  point allows us to predict the value at a 
point at a  finite  distance h .  This prediction mechanism is 
embodied  in  the  Taylor series expansion. However, a  non- 
analytic  function,  such as a  rough  and  discontinuous  function, 
does not demand  any  such  prediction  mechanism  between  the 
immediate  vicinity of a  point  and  its wider surroundings.  The 
Fourier series expansion is stated  in  terms of this  wider con- 
cept of function.  The  coefficients of a  Fourier series, as 
shown  by  the Euler-Lagrange result,  are  obtained by integra- 
tion  and  not  by  differentiation as in  the case  of the Taylor 
series. Each Fourier  coefficient A ,  is obtained  by  integrating 
f ( x )  sin nx over the  entire range. Thus  any  modification of 
f(x) in a  limited  portion of the range changes all of the  Fourier 
coefficients. It follows that  the  interconnections  operate  in 
the  Fourier series in a global  sense and  not in  a  local sense as in 
the case of the  Taylor series. It is the behavior of f(x) in the 
large that  matters in the case of the  Fourier series, and not so 
much  the behavior in  the vicinity of a  point. How can we  re- 
solve the differences  between  these two  types of expansions: 
the  Taylor series, which is the expansion about a  point which 
gives strict  predictions  a  finite  distance  from the  point,  and  the 
Fourier series, which is an  expansion in  the large and  which 
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gives knowledge of the  function  in  the  entire range. The 
Taylor series requires  unlimited  differentiability at  a  point, 
whereas  the  Fourier series does  not  demand  any  differentiabil- 
ity properties  whatever. 

Surprisingly  enough, the chasm between the Taylor series 
and the Fourier  series is bridged by means of the z-transform, 
which is the  fundamental  transform used in  the  theory of 
digital signal processing. Let us consider  an  analytic  function 
f(z) of the complex variable 

We now  expand  the  function  in  a  Taylor series (in the variable 
z-l)  about the  point  z-l = 0, to  obtain  the z-transform 

f(z) = anz-. 
n=O 

The  radius of convergence of this series extends  from z-' = 0 
to  the  fust singular  point,  say, z0' . A singular  point is a  point 
where the  function ceases to be analytic.  The  region of con- 
vergence  of the  Taylor series expansion of f(z) is the region in 
the z-plane outside the circle of radius  Izol; that is, the region 
of convergence is for all points  z  such  that I z - ' ~  < IzO'l or 
equivalently IzI > IzoI. 

Let us now  write the Taylor series expansion for points on 
the unit circle z = cos 8 - j sin 8. We have 

n = o  

which is in  the  form of a  complex  Fourier  series  in the angle 8. 
Three cases can occur. In  the f i t  case, the singular  point zo is 
inside the unit  circle  in the z-plane. In  this case, the  function 
is analytic  on  the  unit circle and the Fourier series thus is an 
analytic  representation of this  analytic  function,  The  French 
Academy believed this was the only case. In the second case, 
the  singular  point zo is outside  the unit circle. In  this case, the 
Taylor  series  does not represent the  function, and so we will 
not  consider the case further.  The  third case is the interesting 
one,  and is the case which resolves the mathematical contre  
versy which  led up  to Fourier's  discovery  in  1807. When the 
singular  point zo lies on  the unit  circle, the Taylor series will 
not converge at some  or all of the  points  on  the unit circle. 
Thus the Taylor series defines  an  analytic  function,  which is 
differentiable to any  order  outside  the  unit  circle,  but  the 
function becomes nonanalytic  at  some  or all of the  points  on 
the unit circle. The  Fourier series in 8 is the Taylor series for 
z  on  the unit  circle,  and  thus the Fourier series represents  a 
function  in  the variable 8 ,  which is nonanalytic  at  some  or  all 
of the points  in its range - A  Q 0 < A. A small modification of 
the  Fourier  coefficients that would move the singular  point zo 
from  on  the unit  circle to  just  inside the  unit circle  would 
change a  nonanalytic  Fourier  representation to an  analytic 
one. The  amazing  thing is that  it is enough to move the singu- 
larity from  the periphery of the unit circle to  the inside  by  an 
arbitrarily small amount,  in  order  to change the given nondif- 
ferentiable  function in 8 to  one  which can be differentiated 
any number of times. Thus the mistake of the great  French 
mathematicians of the prestigious  French  Academy who wanted 
to restrict the validity of Fourier series to  analytic  functions 
depended  entirely on  that extremely small but f i i t e  distance 
from  a point on  the periphery to  a  point  just  inside  the  unit 
circle. A  function can be extremely smooth right up  to  the 
unit circle, and then disintegrate into  a rough and  distorted 

image of its  former self once it is on  the  unit circle. The 
Taylor  series  breaks  down on  the  unit circle,  but its counter- 
part, the Fourier  series  in 8, is still valid. The theorem  of 
Fourier  is  true; science  could blossom. 

V. THE STURM-LIOUVILLE SPECTRAL THEORY OF 
DIFFERENTIAL EQUATIONS 

Following the great  innovation of Fourier  in  1807,  the re- 
markable  properties of Fourier  series were gradually  developed 
throughout  the  nineteenth  century and into  the  twentieth 
century.  The  Fourier series as introduced by Fourier  is  an 
expansion  in  terms of cosines  and  sines,  which  represent  an 
orthogonal  set of functions. However, there  are  many  other 
sets of orthogonal  functions,  and so today  any  such  expansion 
in  terms of orthogonal  functions is called a  Fourier series. As 
we  will see,  some  sets of orthogonal  functions can be stochas- 
tic,  and it  turns  out  that  the corresponding  Fourier series play 
an important role  in  statistical  spectral analysis. 

First,  however,  let us look  at  the  important generalizations 
made by the French  mathematicians Charles Sturm (1803- 
1855)  [7] and  Joseph Liouville (1809-1882) [8] in the 
decade of the 1830's.  Let us now  briefly  look  at the Sturm- 
Liouville theory of differential  equations.  The  vibration of 
any  infinitely  long  right  circular  cylinder of radius  one can be 
described  by a second-order  differential  equation.  Let us con- 
sider  a  simple case, namely, the differential  equation (the 
one-dimensional Helmholtz equation) 

U"(X) + kZ u (x) = 0. 

The  Helmholtz  equation can be obtained by taking the  tem- 
poral  Fourier  transform of the wave equation,  which  set off 
the search for  the  theory of Fourier. Here k is the wavenum- 
ber  which is equal to  w/c where w is the  temporal frequency. 
In the Helmholtz  equation, k2 is some  undetermined  param- 
eter.  The variable x is the central angle of the cylinder,  and so 
x lies  in the range - R  and A. Because the points x = -n and 
x = A represent the same  point  on  the  cylinder, we must have 
the  two  boundary  conditions 

u ( - A )  = u(a) 

u'( -A)  = u'(n). 

The  general  solution of the differential  equation is 

u(x)=A  coskx+Bsinkx.  

The two  boundary  conditions  restrict  the choice of the param- 
eter kZ to  the discrete  set of values 

k2 = 0, l Z ,  2', 3', * 

which are called the eigenvalues of the Helmholtz  equation. 
The  corresponding  solutions of the  equation, namely,  the 
functions 

uk(X)=A  coskx+Bsinkx 

are called the  egenfinctions. These  eigenfunctions  are the c o  
sine  and  sine  functions  which  Fourier  had used to construct 
his Fourier series. These  functions  represent  the  characteristic 
vibrational  modes of the cylinder,  which can only  vibrate in 
this  discrete  set of wavenumbers k = 0, 1, 2, * . Thus  the 
Sturm-LiouvUe  theory  has given the answer to  why the dis- 
crete  set of cosine and sine  functions were the correct  ones for 
Fourier to  use in  a  problem  which  stemmed from  the wave 
equation. 
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Furthermore, the Sturm-Liouville theory gives us added  in- 
sight to spectral analysis and,  in  fact, is the  foundation of the 
spectral  theory of differential  equations. Most of the eigen- 
value problems of mathematical physics are  characterized by 
differential  operators H of the  form 

The  physical  problems we consider  require that  the  function 
A ( x )  be positive within the given interval.  Let us now form  the 
operation VHU - uHv, which is 

VHU - UHU = - [A(x)(Lu' - uv')] . d 
dx  

We notice  that  the right-hand  side is a total derivative, and so 
we have 

T (UHU - uHu)dx = [A(x)(uu'  - UU')];. 

Any  differential  operator H ,  which allows the transformation 
of such  an  integral (as on  the  left)  into a  pure  boundary  term (as 
on  the  right), is called self-adjoint. Thus  the Sturm-LiouviUe 
operator H is self-adjoint.  Often we may  prescribe  boundary 
conditions so that  the right-hand  side vanishes; such  boundary 
conditions  are called self-adjoint. We then have a  self-adjoint 
problem,  namely,  a  problem  characterized by a  self-adjoint 
operator H and self-adjoint  boundary  conditions. We then 
have the  identity  in  the  functions u ( x )  and u ( x )  given by 

1 (VHU - UHV)   dx  = 0 

which is called Green's  identity. 

operator H starts  with  the differential  equation 
The eigenvalue problem  associated  with the self-adjoint 

H$ = A$. 

A solution  satisfying the  boundary  conditions does not exist 
for all values  of A, but  only  for a  certain  selected  set hi called 
the eigenvalues. This set  consists of an  infinite  number of 
eigenvalues hi which  are all real  and  which  tend to   inf i i ty  
with i .  We generally  arrange these eigenvalues in increasing 
order to obtain the infinite  sequence (called the spectrum) 

hl,  AZ, X39 * '  * 

together  with  the corresponding  eigenfunctions 

$ 1 , $ 2 , # 3 > " * .  

We now  consider two  different eigenvalues hi, hk and  their 
corresponding  eigenfunctions $ j ,  (bk. If  we substitute u = $j 
and u = $k into Green's identity, we obtain 

[ ( h , @ j $ k - h k $ k $ j ) d x = O  

which  gives the orthogonality  condition 

ib &(x)   $k (x )   dx  = 0, for j # k. 

By normalization, we can require  that 

lb # ( x )   d x  = 0 

so that  the eigenfunctions form  an orthonormal set.  The 
orthonormal  property can  be written  more concisely as 

I" $j(X)  &(X)  dx = 8jk 

where 6jk is the  Kronecker  delta  function. 

of the  infinite expansion 
Let us now  represent an arbitrary  function f ( x )  in the  form 

m 

f ( x )  = ck$k(x) .  
k = l  

As we have  previously mentioned,  such an expansion is called 
a Fourier  series in  honor of the pioneering  work of Fourier. 
The  Fourier  coefficients Ck are  obtained  by  multiplying  both 
sides by $ j (x )  and  integrating.  The  result is 

cj = f ( x )   $ j ( x )   d x .  6 
Under  certain general conditions, it can  be shown  that  the 
orthonormal  set is complete, so that  the above  Fourier  expan- 
sion  actually converges to  the  function f ( x ) .  Suppose  now 
that f ( x )  is the solution to  the inhomogeneous  differential 
equation 

H f b )  = P(x>. 

In  terms of linear  system  theory, p ( x )  is the  input  andf(x) is 
the  output. Now substitute u = f and v = $k into Green's 
identity, We obtain 

lb ($kHf - f H h )  dx = 0 

which is 

lb ($kP - f hk$k)  dx  = 0. 

The  above  equation can  be written as 

b 1 b 

f @ k  d x =   # k P d x *  

We recognize the  left-hand  side as the expression for  the 
Fourier  coefficient c k .  Thus 

b 

ck = $ k ( t ) P ( t )  dg. 

We now  substitute this  expression for ck into the  Fourier 
series to obtain 

If  we denote the expression in brackets  by G ( x ,  t), then  this 
equation is 
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b 

f ( x )  = 1 P ( t )  G ( x ,  f )  4 .  

This is the integral form of the  input-output relationship,  and 
we recognize 

as the impulse  response  function or Green’s  function (under 
the given boundary  conditions),  a  concept originated by 
George Green (1793-1841) [9]. This equation exhibits the 
impulse response function of a linear system in terms of its 
spectrum A I ,  X2, X3, * * - . We can confirm that  the Green’s 
function is indeed the impulse response by setting  the  input 
p ( x )  equal to  the impulse 6 ( x  - x o ) .  Then the  output is 

~ 6 ( 1 . - x o ) C ( X , f ) d ~ = G ( X , X o )  

and so G(x, X O )  represents the  output  at x due  to an  impulse 
at X O .  Since the differential equation represents  an  input- 
output system, we see that  the Green’s function satisfies 

% ( x ,  XO) = 6 ( x  - x o ) ,  

This equation shows that  the Green’s function G(x, x o )  is the 
inverse of the differential operator H. 

We have thus reviewed the spectral theory of differential 
operators,  and now we can look  at  the most  spectacular a p  
plication of spectral  estimation-quantum physics. 

VI. SCHRODINGER  SPECTRAL THEORY OF THE ATOM 
The Sturm-Liouville theory of the expansion of functions  in 

terms of orthogonal functions  found numerous physical a p  
plications in  the work of Lord Rayleigh (1842-1919). Such 
expansions  occur throughout  the  study of the elastic  vibrations 
of solids and in  the  theory of sound.  In the history of physics, 
a decisive breakthrough  occurred when Erwin Schrodinger 
(1887-1961) [ 101 showed in  1926  that  the vibrations occur- 
ring within the  atom can be understood by means of the 
Sturm-Liouville theory. Let us now explain how the wave 
mechanics of Schrodinger describes the spectral lines of the 
atom. An equivalent  matrix mechanics was formulated a  year 
before Schrodinger by Werner Heisenberg (1901-1976) [ 111. 

Before quantum  theory, classical physics was at an impasse. 
It could not explain the existence of atomic spectra. For ex- 
ample, the bright yellow spectral  line of sodium discovered by 
Bunsen means that  the radiation of its atoms produces  a dis- 
crete  frequency wo. If  we assume that  this line is emitted  by 
an electron, then  the laws of classical physics state  that  such 
an electron should  emit not a  discrete line at oo, but a  whole 
spectrum of lines at all frequencies w, and  with no discontinu- 
ities in  the spectrum. That is, classical physics predicts that  the 
spectrum of an  electron  should be continuous as is the spec- 
trum of the sun. Yet Bunsen observed the discrete spectrum 
of sodium as evidenced by the bright yellow line. (As we  will 
soon see, this  line observed by Bunsen is actually  a doublet, 
which Bunsen was unable to resolve with the means available 
to him.) 

Quantum mechanics allows us to see the  atom  from a new 
point of  view. Quantum mechanics says that  atomic electrons 
jump  from one energy state  to  another, and that  the difference 

of these energies is embodied as a quantum of electromagnetic 
energy, the  photon. i f  the energy diminishes, a photon is 
born. If the energy increases, a photon or  a quantum of energy 
from some other field has been  absorbed just before the  jump. 

In quantum mechanics, an electron is represented by a  prob- 
ability  density function. (The  probability  density function is 
found as the squared  magnitude 1 # 1 2  of a  probability wave 
function 9.) An electron jump has a  probability that depends 
upon  the shapes of the probability  density functions  that cor- 
respond to the electron  prior to and after  the  jump. The prob- 
ability of a jump is, generally speaking, greater  for the stronger 
overlapping or  deeper interpenetration of these probability 
density  functions,  The laws that divide electron  transitions 
in  atoms  into more  probable  and less probable  ones are called 
selection rules. It is in this jumping of electrons that  photons 
are born. These photons  enter a  spectroscope, get sorted  into 
types, and produce the spectral lines. 

The  more photons  that an atom emits in a  second, the 
brighter the spectral lines. If the  number of atoms remains 
constant,  then  the brightness of the spectral lines depends 
upon  the statistical  frequency of electron  jumps in the atoms. 
And this  statistical  frequency is d e t e m e d  by the probability 
distribution of jumps. It is in this way that an atomic spec- 
trum consisting of a number of lines of different brightnesses 
is generated. 

One can make the observation that  the  spectrum estimation 
problem (the subject matter of this special issue of Proceedings 
of  the IEEE) is not central t o  the spectral  representation in 
quantum mechanics. This situation was brought  forcibly to  
the writer’s attention several years ago at  the U.S. Air Force 
Geophysics Library at Hanscom Field, MA, which is one of 
the best scientific libraries in  the world. The  many shelves 
devoted to “spectra” consisted of a mixture of both kinds of 
books, but  no  book devoted to a  discussion of the relation- 
ship  between the  two areas of spectral  theory. 

Spectral  estimation in  quantum mechanics is based on  the 
edifice of spectroscopy,  which is an instrumentational science. 
In  1891,  the physicist A.  A. Michelson developed an inter- 
ferometer,  a device producing the superposition of a  light 
signal on top  of itself with  a prescribed delay. In one series 
of experiments, Michelson first bandpass filtered  a  light signal 
by passing it  through a prism. He then used the  interferometer 
to measure the visibility of the superimposed signal as a  func- 
tion of delay. The  resulting curve was the autocovariance 
function of the original signal. Michelson then used a mechan- 
ical  harmonic  analyzer to compute  the  Fourier transform of 
the visibility curve; that is, he  estimated the power spectrum of 
the signal, Michelson’s experiments were done to  examine the 
fine structure of spectral lines of light. Thus in those early 
days, the present day dichotomy of spectrum estimation  had 
not  yet materialized. 

The  technique of spectral analysis in physics developed 
rapidly in  the  twentieth  century, and the  instruments became 
more  powerful and sensitive. The spectroscopists came up 
with the following question for theoreticians, namely, the 
question of why spectral lines are somewhat fat,  not i n f ~ -  
tesimally thin. 

It was recognized that a photon corresponds to  a  line at one 
frequency w. The question was why the lines on a photo- 
graphic  plate of a  spectroscope  come out somewhat  broad- 
ened, not slender. The answer was found in the wave p rop  
erty of the electron and the Heisenberg uncertainty principle. 
The initial energy of an electron  in an atom refers to a 
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stationary  state,  and so does the final energy.  However, 
an electron  jump is in violation of some steady  state. As soon 
as this  occurs, the Heisenberg principle  takes over.  If  we let 
A t  designate the  lifetime of an  electron  between  jumps,  then 
the  uncertainty of photon energy is A E  - h / A t ,  where h is 
Planck’s constant. Using  Planck’s formula  for energy quanta, 
the  uncertainty A E  of the energy is proportional to  the un- 
certainty AO of the  frequency of the  photon 

A E  = - Ao. 
h 
2.rr 

Thus  the  spectral lines have a  width AO which is inversely 
proportional to  the time of the  “settled life” of the  electron 
in  the  atom 

AO-- 2a  
A t  ‘ 

In  other words, the more  “settled”  or  quiescent  the life of the 
electron  in  the  atom,  the  narrower  the  spectral lines. That is 
why at high  temperatures  and pressures, when  many of the 
atomic  electrons are unsettled,  the  spectral lines broaden  out 
and  become  smeared. Thus an individual  spectral  line  has  a 
finite  width  associated  with  thermal  motion  and collision 
broadening. This is not  only  important  in physics, but it 
relates very importantly to the  topic of spectrum  estimation 
in this special issue. Real “lines” have finite  width. This 
means that real  lines behave like  narrow-band noises and  not 
like  either single frequencies or a  constant-amplitude  lightly 
frequency-modulated signal. 

Let us now  return  the discussion of the yellow  sodium  line 
which Bunsen  observed. The  sodium D line is a  doublet. 
Moreover the  sodium  spectrum  contains  four  lines  in  the 
visible range, and two more in  the near  ultraviolet,  strong 
enough to be  useful for  analytic  chemistry.  The  sodium spec- 
trum  contains 29 lines of astrophysical  interest  between the 
D lines and 4390 ii (still in the visible). 

We might say that Bunsen  over a  century ago  was performing 
spectrum  estimation. He  was unable to resolve the  two fre- 
quencies  present in  the  doublet, even as today a  person  doing 
spectrum  estimation might  have the same  problem  in  some 
other  situation. Also Bunsen  missed the  many  other lines in 
the  sodium  atom, even as today a  person  doing  spectrum esti- 
mation  might not find  some  features  without  the use  of modem 
techniques. As spectrosopic  instruments  became  better,  these 
lines were  discovered.  Now another  question,  however,  has 
come  up. Many spectral lines, which, it would seem, should 
correspond to a single frequency,  actually  turned  out to be 
the  states of a  number of very  close-lying lines. The  fact that 
the  sodium D line is a  doublet is a case in  point.  The  fine 
structures of spectral lines (doublets,  etc.) were  revealed only 
because  of the great advances in  spectral  techniques.  In  turn, 
electron  spin was  discovered in  order to explain  these  “fine 
qualities” in spectra.  Let us briefly give the reason.  When 
spectra  are  generated,  the  states of two  electrons  with  opposite 
spins  can  have slightly different energies. As a  result, the spec- 
tral  line is doubled; in place  of one line we have twin  lines  with 
identical brightnesses. Such  twins  are usually born  only  when 
the  outer  electron shell has  one  electron. If the  number of 
electrons  in this shell increases,  we can have triplets  and even 
larger families of the  former  spectral line, 

Let us now  consider the  quantum mechanical  formulation of 
the  harmonic oscillator  problem.  In  terms of the nondimen- 

SiOnal displacement x ,  the time-independent Schriidinger equa- 
tion is 

H$ = A$ 

where His defied as the differential operator 

H = ~ - x  d 2  2 
dx  

and A is def ied  as 

2 E  A =  - 
- K w O  

Here $ is the  probability wave function,  the  constant E is the 
energy, h = 27cH is Planck’s constant,  and  the  constant oo is 
the  natural  frequency.  The  problem of finding the  probability 
wave function $ is a Sturm-Liouville problem. The  solution 
gives the eigenvalues as 1, 3, 5, 7, * , and so we write 

Ak = (2k + l) ,  for k = 0, 1,2,  * . 
Thus the eigenenergies are 

Ek = i l i u O h k  = l f o o ( k  + i), for k = 0,1 ,2 ,  * * . 
The  corresponding  eigenfunctions  are 

$k = Ck hk(x)   edX2fi ,  for k = 0,1 ,2 ,  * * * 

where Ck is a  normalization  constant,  and h k ( x )  is the Hermite 
polynomial of order k. The discrete  set of eigenenergies E o ,  
E l ,  E2,  * * * represent  the  discrete  lines observed in  the spec- 
trum. Thus quantum mechanics, through  the use of Sturm- 
Liouville theory, is able to explain the existence of atomic 
spectra. However, certain  mathematical  difficulties  remained; 
the  history of their  resolution is given in  the  next  section, 

WI. THE VON NEUMANN SPECTRAL, 
REPRESENTATION THEOREM 

In finite-dimensional space, the following eigenvalue prob- 
lem is posed. Given an Hermitian matrix H, frnd all column- 
vector  solutions $ of  the characteristic equation 

H$ = A$ 

where A is a  constant also to be determined.  That is, given H ,  
find $ and h The  solutions d l ,  , $, are called the eigen- 
solutions (assumed to be  normalized),  and the corresponding 
real numbers A I ,  * ,  A, are called the eigenvalues  of the 
matrix H .  The  totality of the eigenvalues Al , A2, * * , A,, in 
order of increasing  magnitude, is called the spectrum. Now 
write the eigenequations 

H$k = Ak$k (for k = 1, * a ,  n )  

in the  form of the  matrix  equation 

HU = UA. 

Because the eigensolutions are orthonormal,  the  matrix U 
(which  has the eigensolutions as it columns) is unitary, i.e., 

UUT = I  

where I is the  identity matrix.  (The  superscript T indicates 
complex  conjugate  transpose.)  The  matrix A is diagonal  ma- 
trix,  with  the  spectrum along its diagonal. Thus this eigen- 
value problem can be described as the problem of finding  a 
unitary  matrix U that reduces H to a  real  diagonal  matrix, 
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Le., 

U-'HU = A. 
(Note:  In case H i s  real, then H is a  symmetric  matrix  and U 
is an orthogonal  matrix.) 

Although  the  unitary  matrix U, whose columns  are the 
eigensolutions @i, is not  uniquely  determined by H, John von 
Neumann [ 121 in  1929  exploited  the  unitary  nature of U to  
reformulate  the eigenvalue problem.  The von Neumann r e  
formulation, which is called the spectral  representation  prob- 
lem, yields  the same results as the eigenvalue problem  in  finite- 
dimensional  space, but has the advantage that  it can be ex- 
tended to  Hilbert  space. 

We recall that  the diagonal  matrix A is defined to be the 
matrix  with  the eigenvalues, ordered by increasing  magnitude, 
along its main diagonal  and  zeros  off the diagonal. Because of 
this  ordering, the  matrix A is uniquely  determined  for  any 
given Hermitian  matrix H. Because some eigenvalues may be 
repeated,  let us relabel them as A1, Xz, * , X, (with m < n),  
where each hi is now  distinct.  Consequently  for  a given H,  
we have the  unique  decomposition 

A = A l Q 1   + X z Q z   + * " + A m Q m  

where Qi is a diagonal  matrix  with 1's in those places on  its 
main diagonal in which A, occurs  in A and 0's elsewhere. 
The sum of the Q f  g i v e s  the  identity  matrix 

I = Q l  + Q z  +*"+Q, .  

We now  define  the  matrix Pi as 
Pi = UQiU-l (for j = 1,  2, * * * , m ) ,  

A projection  matrix is defined as a Hermitian idempotent 
matrix. Because Qi is Hermitian (Qi = QT) and  idempotent 
(QiQi = Qi),  it follows that Qi is a  projection  matrix. Be- 
cause Pi is Hermitian (Pi = Pi') and  idempotent 

PIPI = UQjU-'  UQjU-' = UQjQjU-' =Pi 
it follows that Pi is a  projection  matrix. Since for i # j  

PiPi = UQiU-l  UQiU-' 0 

it  follows that Pi + Pi is a  projection  matrix  and  the  space 
spanned  by Pi is orthogonal to  the space  spanned  by PI. Let 
us now  define  the  function X(A) of the  continuous  variable 
A a s  

X(A)=P,6(A- A 1 ) + P z 6 ( h -  A2)+...+Pm6(A- A,). 

This function is the  continuous  representation of the  suite 
of projection  matrices PI, P z ,  * , P,. 

We now consider the  quadratic  form uHv where u is a row 
vector  and u is a column  vector. We have 

UHU=UUAU-~U=UU(X~Q, + A ~ Q ~  + . . a +  X , Q , , , ) U - ~ U  

=u(h1P1 +AzPz +"'+X,P,>U 
= ~ ~ u p ~ u t ~ ~ u p ~ u + ~ ~ ~ t ~ , u p , v .  

The essence of the von Neumann  spectral  representation lies in 
the  fact  that  the  components uPiu are  numerically  invariant 
for given u, H, and u. In this way, the  nonuniqueness of the 
unitary  matrix U appearing in the eigenvalue decomposition 
is bypassed. We see that we can write  the  quadratic  form as 
the  integral 

This equation  represents  the von Neumann spectral  representa- 
tion o f  the  Hermitian matrix H 

Let us now  analyze  this  equation. If  we strip  the u and v 
from  this  equation, we are left  with 

00 .=I, X X ( A ) d A  

which,  in  matrix notation, is 

We can  write  the row  vector u as 

which is 

u = u P ~  +UPZ + . * * + U p , .  
Finally, we can write 

W 

HU =[= AX(h) U d A  

which is 

HU=X~P~U+A~P~U+...+X,P,V. 
Let us now consider  functions of the  matrix H. First, we 

consider  the  square  of H.  We have 

Hz=(AIPl +.**+A,P,)2=A:P1 t . . - t A ~ P r n  
00 =I, AzX(A) dX. 

We see that  squaring H results  in  squaring  the A inside the 
integral.  In  general, if we form  a  function of H,  then  the 
result is that  the same function of A is taken  within  the  in- 
tegral sign; that is 

f ( H )  =[I f ( A )  X(N dA.  

The  above  spectral  representation was derived for finite 
dimensional  space, that is, a space  in which the  elements u 
and u are vectors  and  the  Hermitian  operator H i s  a matrix. 
One of the major  achievements of  von Neumann was the d e  
velopment of the  concept of the  infinitely-dimensional  space, 
which he  called Hilbert  space in  honor of the great mathe 
matician David Hilbert  (1862-1943). We now  let u and u 
represents  elements  in  Hilbert  space,  and  let H represent  a 
Hermitian  operator. A Hilbert  space is characterized  by  an 
inner  product  (or  dot  product).  The inner product of the 
elements u and u is denoted  by (u, u). If  we let H operate  on 
the  element u, we obtain  a new element Hv. The  inner 
product of the  elements u and Hv is denoted  by (u, Hu). 
This inner  product is the  counterpart of the  quadratic  form 
uHv in  finite-dimensional  space. Once we establish  this  con- 
nection,  it  turns  out  that  the von Neumann  spectral  repre- 
sentation  has  exactly  the same form  in  Hilbert  space as it does 
in  finite-dimensional  space.  Thus  in  Hilbert  space, we also 
have an operator X( X), which is the  continuous  representation 
of the  suite of projection  operators  associated  with  the Her- 
mitian  operator H. Whereas in  finite-dimensional  space, we 
made use  of the  quadratic  form uX(A) u, we now make use of 
its  counterpart (u, X(A) v >  in Hilbert  space.  Thus the von Authorized licensed use limited to: University of Washington Libraries. Downloaded on May 28,2010 at 14:31:50 UTC from IEEE Xplore.  Restrictions apply. 
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Neumann spectral  representation in Hilbert space is 

( u ,  Hu) = A h ,  X(A) u> dh. I, 
Let us now look  at some  history.  In general, there is no 

quadratically  integrable solution to  the eigenvalue problem in 
Hilbert space. This circumstance, however, bothered  no  one 
working in physics. Wavelet solutions (i.e., quadratically in- 
tegrable superpositions of eigenfunctions  with eigenvalues in 
a small neighborhood) were used from  the  start, appearing in 
the works of de Broglie and Schrodinger from 1924. 

One of the  authors cited in the Reference  Section  knew von 
Neumann  personally,  studied his work assiduously, and cer- 
tainly regards him as one of the  truly great founders  of quan- 
tum theory. However, there was never a “crisis in physics” 
that was resolved by the von Neumann  spectral  representation 
theorem. Most people  doing the practical calculations to be 
compared  with experiment had never heard of the theorem, 
which was for  them  at  such a high level of abstraction that  it 
had no bearing on what they were doing. 

Throughout  this essay we have traced the development of 
spectral theory,  from  the  analytic  functions of Brook Taylor, 
to  the nondifferentiable functions of Jean Baptiste Joseph de 
Fourier,  and  now to  the more general operators  of Hilbert 
space. At each stage, these  developments were mathematical 
in nature,  but  they laid the  foundations  for subsequent ad- 
vances in physics. Reasoning in mathematics and reasoning in 
physics often  appear  quite different. When a  major physical 
breakthrough occurs, such as in  quantum mechanics in  the 
192O’s, and  a  flood of exciting  new physical results come out, 
certainly the work of mathematicians in establishing existence 
and  uniqueness theorems might seem somewhat irrelevant. 

For a moment  let us go back to  Sir Isaac Newton. It is often 
said that  the unique greatness of Newton’s mind and  work 
consists in the  combination of a supreme experimental  with  a 
supreme mathematical genius. It is also often said that  the 
distinctive feature of Newtonian science consists precisely in 
the linking together of mathematics and experiment,  that is, 
in the mathematical treatment of experimental or (as in 
astronomy, geophysics, or wherever experiments  cannot be 
performed) observational  data.  Yet,  although  correct, this 
description  does not seem to be quite  complete; there is more 
in the work of Newton than mathematics  and  experiment. 
There is also a  deep intuition and insight in his interpretation 
of nature. 

In today’s science, specialization has gone far. Physicists 
use mathematics; they  formulate problems, devise methods  of 
solution, and  perform  long  derivations  and calculations, but 
generally they are not  interested  in creating new mathematics. 
The discovery and  purification of abstract  concepts and prin- 
ciples is particularly in  the realm of mathematics. John von 
Neumann  (1903-1957) is a  prime  example of a  mathematician 
doing physics. When he did physics, he  thought and calculated 
like  a physicist, only faster.. He understood all branches of 
physics, as well as chemistry and astronomy, but mainly he 
had a talent  for  introducing  only  those mathematical ideas 
that were relevant to  the physics at  hand. The introduction of 
abstract Hilbert space theory  in  quantum mechanics, chiefly 
by von Neumann, made possible the  construction  of a solid 
theory  on t h e  basis of the powerful  intuitive ideas of Dirac 
and other physicists. 

The physics of quantum  theory  cannot be mathematically 
formulated  in finite-dimensional space but requires Hilbert 
space. After  the work of Heisenberg and SchrBdinger in 1925 

and 1926,  there was a crisis in abstract  mathematics because 
the physics of  quantum mechanics could not be adequately 
formulated  in  terms of the existing  mathematical  framework. 
This situation was rectified in 1929 by von Neumann [ 12 J 
who laid the mathematical foundations of quantum mechanics 
in terms of Hilbert space. There is an apocryphal  story  that 
the  young  John von Neumann,  who was barely past being a 
teenager, and had not  yet earned his doctorate, was lecturing 
in GBttingen. Of course, most of the famous physicsts present 
regarded his work as too abstract, but  the great mathematician 
Hilbert was in the audience. As the  story goes, the elderly 
Hilbert leaned over and whispered into Professor Courant’s 
ear: “What is this Hilbert space?” Another even more apoo 
ryphal story goes as follows. A group of physicists came to  
von Neumann  and described a  problem in physics which they 
could not solve. After thinking for a while, von Neumann in 
his head came up with the numerical answer which agreed with 
the experimental  result,  which the physicists knew but had not 
told him. They were very impressed and they blurted out 
“Dr. von Neumann, the general solution involves solving an 
infinite set of nonlinear  partial  differential  equations. Cer- 
tainly you have found some  mathematical shortcut!” von Neu- 
mann answered “NO, I solved the  infinite set.” 

von Neumann [ 131 showed that  from a  mathematical point 
of view, it is the spectral  representation that is required in 
quantum mechanics rather  than  the solution of the eigenvalue 
problem as such. In  this sense, spectral theory represents the 
key to  the understanding of the atom.  In  fact, von Neumann 
[ 13 J has shown  that  the spectral  representation  enters so es- 
sentially into all quantum mechanical concepts that  its 
existence cannot be dispensed with. His establishment of  the 
spectral  representation of the Hermitian operator H is one of 
the great achievements in mathematics,  and  a  milestone in the 
history of spectral  theory. 

VIII. EINSTEIN-WIENER THEORY OF BROWNIAN MOTION 
A highly interesting kinetic  phenomenon known as Brownian 

movement was first reported  in  1827 by the distinguished 
botanist, Robert Brown, who  found  that “extremely  minute 
particles of solid matter when suspended in pure  water  exhibit 
motions  for which  I  am  unable to account  and which, from 
their irregularity  and seeming independence, resemble in a 
remarkable degree, the less rapid motions of some of the sim- 
plest animalcules of infusions.” This type of irregular zigzag 
movement is typified by the dancing of dust particles in a 
beam of light. The cause of Brownian movement was long  in 
doubt,  but with the development of the  kinetic  theory of 
matter came the realization that  the particles move because 
they are bombarded  unequally  on  different sides by the r a p  
idly moving molecules of the fluid in which they are sus- 
pended. The Brownian movement never ceases. The detailed 
physical theory of Brownian movement was worked out  in 
1904 by M. von Smoluchowski [ 141, and in a  more  final form 
in  1905 by Albert  Einstein [ 15 I .  In  1923,  Norbert Wiener 
[ 161 developed the mathematical theory of Brownian move- 
ment, which today is the basis  of the mathematical  model of 
white noise in  continuous time. White noise is defined as a 
stationary  random process which has a constant spectral 
power  density. The  concept of the white noise process, as 
given by the Einstein-Wiener theory of Brownian motion, is 
important  in all  theoretical studies of spectrum analysis. 

In practice,  a signal is of frnite duration,  and usually can be 
digitized on a grid fine  enough for  interpolation to be ade- 
quate. In this sense, the set of data representing  a signal is 
really finite. Accordingly, we do  not have to  go to  continuous Authorized licensed use limited to: University of Washington Libraries. Downloaded on May 28,2010 at 14:31:50 UTC from IEEE Xplore.  Restrictions apply. 



894 PROCEEDINGS OF THE  IEEE, VOL. 70, NO. 9, SEPTEMBER 1982 

time  or to infinite  time unless 1) we so wish or 2) we gain from 
it.  In other words, as long as we stay finite, we do  not  need 
the Einstein-Weiner theory. With this caveat  emptor, let us 
now discuss this  theory. 

A white noise process in  continuous  time  cannot be repre- 
sented  by  the  ordinary  types of mathematical  functions  which 
one meets in calculus, Instead,  white noise can only be 
represented by what  mathematicians call a generalized f u n c  
tion. The  most  familiar  example of generalized function is the 
Dirac  delta  function, which is often  defined as 

6 ( t  - t o )  = I 0, for t f  to 

00, for t = to 

00 

6 ( t -  t o ) d t =  1. 

The  most important  property of the  delta  function is its sift- 
ing property,  that is, its ability to isolate or  reproduce  a par- 
ticular value of an  ordinary  function f(t) according to  the 
convolution  formula 

If one feels uncomfortable  with generalized functions,  then 
one can often avoid them by  using Lebesgue-Stieltjes integrals. 
For example,  the Heaviside step  function H ( r )  is an ordinary 
function  equal  to  zero  for t < 0 and to one  for f 2 0. Since 

d H ( t )  = 6 ( t )  d t  

the above  convolution  formula  becomes  the Lebesgue-Stieltjes 
integral 

[I f(t - t o )  d H ( t )  = f ( t o ) .  

This Lebesgue-Stieltjes integral involves only  ordinary 
functions. 

Let us now  look  at  a white  noise  process which we denote 
by e( t ) .  It is a generalized random  function. Again let f(t) 
be an ordinary  function,  and consider the  convolution  integral 

00 

f(t - t o )  e ( t )  d t .  

Let d ( t )  be the  integrated  white noise process, so that we may 
write 

d 8  ( t )  = e ( t )  d t .  

The  integrated  white noise process d ( t )  is an ordinary  random 
function,  and  the above  convolution  becomes  the Legesgue- 
Stieltjes  integral 

00 1- f(t - t o )  & ( t ) .  

Wiener formulated  everything. in terms of Lebesgue-Stieltjes 
integrals  with  ordinary  functions.  However, we are going to 
take a strictly engineering approach  and  formulate things in 
terms of ordinary  integrals, but  with generalized functions. 

Without loss of generality in the discussion which follows, 
we can for  convenience  let to = 0, so that  the integral k 

question  becomes [I f ( t )  e ( t )  dr.  

As is usual  statistical  practice, let E denote  the  mathematical 
expectation  operator. Since this operator is linear, it may be 
interchanged  with  integral signs (provided  certain  regularity 
conditions  hold).  The  expectation of the above integral is 

00 

f(r) e ( t )  d t = l s  f ( t ) E e ( t )  d t .  

Because we want  white noise to have zero  mean, we let 
Se(t )  = 0, and so the above  integral is zero. Let us next con- 
sider the variance given  by 

E [ J m f ( t ) a ( t ) d t ] 2  -00 = s [ I _ f ( t ) € ( t ) d f / P f ( ~ ) e ( ~ ) d ~ ]  -00 

00 

= f ( t ) f ( T ) E [ d T )  €(TI1 d t   d7 .  

Now we come to  the  key  point. We want  white noise to be 
uncorrelated  at  two  different  time  points,  but  at  the  same  time 
we want  the variance of white  noise to produce an impulse so 
as to make the above  integral have a  nonzero value. Thus  the 
key  element is to define  the covariance E [ e ( t )  e(7)I as being 
equal to 6 ( t  - 7). Then  the  above  integral  becomes 

L 00 

f(t) f(7) 6 ( t  - T )  d t  d7 = 1, f 2  ( t )  d t .  

We can therefore  make  the  following  definition. A generalized 
random  function e ( t )  is white noise provided that Ee( t )  = 0 
and Ee(t)  E ( T )  = 6 ( t  - T) .  For a  long  time  such  a  random pro- 
cess  was regarded as improper. As we know,  the  delta  function 
can be approximated  arbitrarily close by  ordinary  fun@ 
tions. Likewise, the  white  noise process e ( t )  can be approxi- 
mated  arbitrarily close by ordinary  random processes. 

Because one never uses the  white noise process in  isolation 
but  only  in  integrals,  the  white noise process can be avoided 
by the use  of the Lebesgue-Stieltjes integral, just as the Dirac 
delta function can be so avoided. However, as we have  said, 
we will not  follow  the Lebesgue-Stieltjes approach here. 

Let us now consider white noise e ( n )  for discrete  (integer) 
time n. White noise in  discrete  time is not a generalized random 
process, for e ( n )  is merely a  sequence of zeremean,  constant- 
variance, uncorrelated  random variables. However, the  Fourier 
transform of discrete  white noise is a generalized random pro- 
cess, which we denote by E ( o ) .  We have 

~ ( o ) =  2 e(n)e-’wn (for -a Q o Q n). 

We can easily verify that E(w) has  zero  mean.  The covariance 
of E(w) is 

n =-m 

n k 

n k  

Because E e ( n )  e ( k )  = (i.e., the  Kronecker delta function, 
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which is one  when n = k and  zero  otherwise), we  have 

B[E*(u) E(C( ) I  = e-in(p-u) = 27r6 (c( - a). 
n 

That is, the covariance is a Dirac delta  function.  Thus we 
come to an  important result:  The  Fourier  transform of a  white 
noise  process in (infinitely extended) discrete  time n is a  white 
noise  process in  the  continuous variable o. (It is easy to show 
that  the corresponding  result  holds for  the case  of a  white 
noise  process in  continuous  time.) In other words, the  Fourier 
transform of a very rough  (white) process in  time is a very 
rough  (white) process in  frequency.  The  Fourier  transform 
preserves  (saves) information  and  does  not  smooth  (destroy) 
information.  Today  this  result is second-nature to an engineer, 
but when Wiener obtained this result in 1923 it was startling. 
Wiener unlocked the  spectral  theory of the  most  random of 
processes (white noise), and  now  the stage was set  for  applying 
this result to  the more smooth processes which  are  generated 
by  many  physical  phenomena. Wiener made  this  application 
in 1930  under  the  name of  generalized harmonic analysis, but 
before we  give its  history we will break our  train of thought 
and  look  at  the innovative  work of Yule in  1927. Yule’s work 
at  the  time seemed  modest. While most  mathematicians  and 
physicists were  developing general  methods to deal  with the 
infinite  and  the  infinitesimal  in  spectrum analysis, Yule  was 
developing  a  simple  model  with  a  finite number of parameters 
(i.e., a  finite  parameter  model)  in  order to handle  spectrum 
analysis in  those cases where  this  model was appropriate. This 
model of  Yule is known as the autoregressive (AR) process. 

IX. YULE AUTOREGRESSIVE SPECTRUM 
ESTIMATION METHOD 

At the  turn of the  twentieth  century, Sir Arthur  Schuster 
[ 171 introduced a  numerical  method of spectrum analysis for 
empirical time series. Let x ( n )  represent  the value  of a  time 
series at discrete  (integer) time n. Given N observations of the 
time series from n = 1 to n = N ,  then Schuster’s method con- 
sisted of computing  the periodogrum P(o) defined as 

~(o)=- Ix( l )e- iw  +x(2)e- iw2 + * * a  +x(N)e-juN12. 
1 

N 

For example,  suppose that  the time series consists of a sinu- 
soid of frequency oo with  superposed  errors;  then, the per- 
iodogram  would  show  a  peak at o = oo. Thus  by  computing 
the periodogram, the peaks would  show the  location of the 
frequencies of the underlying  sinusoidal  motion.  Until the 
work of  Yule (1871-1951)  in  1927 [18],  the  Schuster per- 
iodogram  approach was the  only numerical  method of empiri- 
cal spectrum analysis. However, many  empirical time series 
observed in  nature yielded  a  periodogram that was  very erratic 
and did not  exhibit  any  dominant peaks. This led Yule to 
devise his autoregressive method of spectrum analysis. In 
those days, empirical  spectrum analysis  was  called the investi- 
gation of periodicities in disturbed series. His main  application 
was the  determination of the  spectrum of Wolfer’s sunspot 
time series. 

G. Udny Yule in  1927  introduced  the  concept of a  finite 
parameter  model  for  a  stationary  random process in his funda- 
mental  paper  on  the investigation of the periodicities in  time 
series with special reference to Wolfer’s sunspot  numbers. If 
we consider  a curve representing  a  sinusoidal function of time 
and  superpose on the  ordinate small random  errors, then  the 
only  effect is to make the graph  somewhat  irregular, leaving 

the suggestion of periodicity s t i l l  quite clear to the eye. If the 
errors  are  increased  in  magnitude,  the  graph  becomes  more ir- 
regular, the suggestion  of periodicity  more  obscure,  and we 
have only  sufficiently to increase the  errors to mask com- 
pletely  any  appearance of periodicity.  But,  however large the 
errors, Schuster’s periodogram analysis is applicable to such  a 
time series, and given a  sufficient number of observations 
should yield a close approximation to  the period  and ampli- 
tude of the underlying  sinusoidal wave. 

Yule reasoned in  the following way. Consider  a case in 
which  periodogram analysis is applied to a  time series gen- 
erated  by  some  physical  phenomenon  in  the  expectation  of 
eliciting  one  or  more true periodicities.  Then it seemed to 
Yule that  in  such a case there  would be a  tendency to start 
with  the initial hypothesis  that  the  true periodicities  are 
masked  solely  by additive  random noise. As we well know, 
additive  random noise does not  in  any way disturb  the  steady 
course of the underlying  sinusoidal function  or  functions.  It 
is true  that  the periodogram  itself will indicate  the  truth  or 
otherwise of the  hypothesis made, but Yule  saw no reason 
for assuming it to be the  hypothesis  most  likely u priori. 

At this  point, Yule introduced  the  concept of an  ihput- 
output feed-back model,  The  amplitude of a simple harmonic 
pendulum  with  damping  (in  discrete  approximation) can be 
represented  by the  homogeneous difference  equation 

b ( n ) + u 1 b ( n -  l ) + u z b ( n -   2 ) = 0 .  

Here b ( n )  is the  amplitude at discrete  (integer)  time n. Errors 
of observation would  cause superposed  fluctuations  on b ( n ) ,  
but Yule  observed that, by  improvement of apparatus  and 
automatic  methods of recording,  errors of observation can be 
practically  eliminated: An initial  impulse  or  disturbance  would 
set  the  pendulum  in  motion,  and  the  solution of the difference 
equation would  give the impulse response. The  initial condi- 
tions are b (n) = 0 for n < 0 and b (0) = 1. The  characteristic 
equation of the difference  equation is 

E’ + u l E  + u 2  = 0. 

From physical considerations, we know  that  the impulse 
response is a  damped  oscillation, so the  roots El and E2 of the 
characteristic  equation  must  be  complex  with  magnitude less 
than one. This condition is equivalent to the  condition  that 
uz < 1 and 4u2 - a: > 0. The  solution of the difference  equa- 
tion  thus  comes  out to be 

b (n) = eAn 
s i n ( n +  l ) o o  

sin a0 
where 

A = 0.5 In ~2 

wo = tan-’ [-a;’ d W .  
The  damped  oscillation b (n) is the impulse  response  function. 
The  frequency 00 is the  fundamental  frequency of the im- 
pulse response  function. 

As  we mentioned  above, Yule ruled out superposed  errors. 
Now,  however, he allows a driving function  (or  input) of white 
noise, which he describes in the following way. The  apparatus 
is left  to  itself,  and  unfortunately  boys get into  the  room  and 
start pelting the  pendulum  with peas, sometimes  from  one  side 
and  sometimes  from  the  other. He states  that  the  motion is 
now affected,  not  by superposed  fluctuations,  but  by driving 
disturbances. As a  result, the graph will  be of an  entirely 
different  kind  than  a  graph  in  the case  of a  sinusoid  with super- 
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posed errors, The pendulum  and pea graph will remain sur- 
prisingly smooth,  but amplitude  and phase will vary con- 
tinuously, as governed by the inhomogeneous  difference 
equation 

x ( n ) t a l x ( n -   1 ) + ( 1 2 x ( n -   2 ) = € ( n )  

where ~ ( n )  is the white noise input. The  solution of this dif- 
ference equation is 

00 

x(n) = b ( k )  ~ ( n  - k) 
k = 0  

where b (k) is the impulse response function given above. 
Yule thus created  a  model  with  a  finite number of param- 

eters, namely, the coefficients al  and a2 of the difference 
equation. Given an empirical time series x(n),  he uses the 
method of regression analysis to   f i id  these two coefficients. 
Because he regresses x(n) on its own past instead of on  other 
variables, it is a self-regression or autoregression. The least 
squares  normal equations involve the empirical autocorrelation 
coefficients of the time series, and today these equations are 
called the Yule-Walker  equations. 

Yule carried out his autoregressive analysis on Wolfer’s sun- 
spot numbers, which are a  sequence of yearly observations of 
sunspot observations. He used the numbers over the period 
1749-1 924 and obtained  the autoregressive equation  (with  the 
mean value removed) 

x ( n ) -  1.34254x(n - 1 ) + 0 . 6 5 5 0 4 x ( n -   2 ) = ~ ( n )  

and thus 

X = 0.5 In 0.65504 = -0.21  154 

wo = 33.963’ per year. 

Hence, the  dominant period is 36O0/wO = 10.60 years. Yule 
states  that his autoregressive method represents an alternative 
method of estimating the spectrum, as opposed to  the Schuster 
periodogram. In fact, his autoregressive model gives him an 
estimate not only of the power spectrum  but of an amplitude- 
and-phase spectrum 

00 1 

which, for  the  sunspot numbers, is 

1 
1 - 1,34254 e-iw + 0.65504 e-2iw 

B(w)  = 

The magnitude IB(o)l  and the phase d ( o )  are given by  the 
equation 

The power spectrum is the square of the magnitude  spectrum, 
that is, IB(o)12. The peak is close to  the  fundamental fre- 
quency wo = 33.963’ per year. Except  in  exploration g e e  
physics [ 19 I ,  [201, where Yule’s amplitude-and-phase spee 
trum B(o) is physically the  spectrum of the minimum-delay 
seismic wavelet, Yule’s spectral  estimation method received 
scant attention  until  the 1960’s. 

X. WIENER’S GENERALIZED HARMONIC ANALYSIS 

Norbert Wiener [ 2 11 published in  1930 his classic paper, 
“Generalized Harmonic Analysis,” which  he personally con- 
sidered his finest work. In his introduction,  he  states  that  he 

was motivated by the work of researchers in optics, especially 
that of Rayleigh and  Schuster. However, Wiener demonstrated 
that  the domain of generalized harmonic analysis was much 
broader than optics. Among Wiener’s results were the writing 
down of the precise definitions of and the relationship be- 
tween the autocovariance function and the power  spectrum. 
The  theorem  that these two functions make up a Fourier 
transform pair is today known as the Wiener-Khintchine 
theorem  [221. 

Mention should be made of the basic fact that  the existence 
of the  spectrum follows from  the properties of positive defi- 
nite functions. Bochner’s theorem  on  the spectral representa- 
tion of positive definite functions provides a  direct  mathe- 
matical  unification of spectral  theories in Hilbert space and in 
stationary time series. 

The writer several times in the 1950’s discussed with Pre 
fessor Wiener why his 1930 paper was not more  accepted  and 
used by the mathematical profession at  the time. As with all 
things, Wiener looked at history quite objectively and  with his 
characteristic  concern for and love of people. In retrospect,  it 
seems it was not until the publication of  Wiener’s book Cyber- 
netics (231  in  1948 and also the nonclassified publication of 
his book Time Series [24]  in  1949  that  the general scientific 
community was able to  grasp the overall plan and  implications 
of Wiener’s contributions. 

The following passage from Wiener’s 1933  book The  Fourier 
Integral [251 indicates the philosophy of  Wiener’s thinking 
and his great personal appeal: 

“Physically speaking, this is the  total energy of that  portion 
of the oscillation lying  within the interval in question. As 
this determines the energy-distribution of the spectrum, we 
may briefly call it  the “spectrum.”  The author sees no com- 
pelling reason to avoid a physical terminology in pure  mathe- 
matics when a  mathematical concept corresponds closely to  
a concept already familiar in physics. When a new term is to  
be invented to describe an  idea new to  the pure mathe- 
matician, it is by all means better  to avoid needless duplica- 
tion, and to  choose the designation already current,  The 
“spectrum” of this book merely amounts to rendering pre- 
cise the  notion familiar to  the physicist, and may as well be 
known by the same name.” 

Let us now define a stationary random process. We could 
either use discrete  or continuous  time,  but  for convenience let 
us use discrete  (integer) time n. Let the process be denoted  by 
x(n), which, we will assume, has  zero mean. The process is 
called (second-order) stationary, provided that  its  autoce 
variance function 

@(k) =lTx*(n)x(n + k) 
depends  only upon  the time-shift k. Here, as always, the super- 
script asterisk indicates complex-conjugate. The normalized 
autocovariance function is called the  autocorrelation function. 
However, Wiener generally used the  term  autocorrelation  for 
@(k), whether it was normalized or  not, Nevertheless, i t  is 
confusing to  keep using the  term  “autocorrelation” with two 
different meanings. It is better t o  use the  term “autocovari- 
ance” wherever it is appropriate. 

A  white noise process is stationary.  In the case of continu- 
ous time,  its  autocorrelation is 6 ( t )  (the Dirac delta), whereas 
in the case of discrete time, its autocorrelation is 6 k  (the 
Kronecker delta). As we have seen, the Fourier transform 
E(w) of white noise in time is white in  frequency;  that is, the 
autoconrelation in  frequency is the Dirac delta function 
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The  problems  confronting  empirical  workers in  spectral 
analysis in  the fmt part of the  twentieth  century were  cen- 
tered  around  the  Schuster periodogram. Schuster  introduced 
this concept at  the  turn of the  century,  and  until Yule’s work 
in  1927,  it was the only  method available to carry out empiri- 
cal spectral analysis. Suppose  that we  observe a  stationary 
random process for a very long  time, so that we obtain  a  time 
series x ( n )  for n = 1, 2, * * , N ,  where Nis  verylarge.  Schuster 
then  computed  the periodogram 

where X(w)  is the discrete  Fourier  transform 

n=l  

(Today we  can compute X(w) very rapidly by means of the 
Cooley-Tukey fast  Fourier  transform,  but  then it was a for- 
midable task.) In  the case  when the stationary process is made 
up of sinusoidal waves with  superimposed  white noise, the 
periodogram is effective in picking out  the discrete  frequencies 
of the sinusoids. But  a  purely  nondeterministic  stationary 
process is  generated by  the  convolution  formula  (input-output 
relation) 

00 

k=O 

(Here we interpret b ( k )  as the impulse  response function of a 
filter, the  white noise  process E(n) as the  input  to  the filter, 
and  the  stationary process x ( n )  as the  output).  For  such a 
process, the  Schuster periodogram P(o) is extremely  rough, 
and often  cannot  readily be interpreted.  Empirical  spectral 
analysis  was at  an  impasse, Most of the  time series observed 
in  nature  could not be analyzed by  the  methods available in 
1930. 

Now comes Wiener in  1930  with generalized harmonic 
analysis, In brief, Wiener in  1930  knew  how to take the 
Fourier  transform of a  stationary  random process, a  milestone 
in  the use  of Fourier  methods. Wiener’s  generalized harmonic 
analysis makes use of a generalized random  function,  namely, 
the Einstein-Wiener (white  noise) process. In  order to  put 
Wiener’s work into  context, we will now give a small  digression 
on  the most widely known generalized function:  the Dirac 
delta  function. 

The impuhe  (Dirac  delta)  function had  been known  for 
many  years  prior to  its use by Dirac [26]  in  1928.  It was 
known  by Heaviside [27]. However, it took  the  stature of a 
great  physicist,  Paul Dirac, to decree in  1928  the use  of the 
impulse function in physics. In  those  early  days,  people used 
to talk  about 6 ( t )  as a function of t in the  ordinary sense 
whose integral  with f ( t )  produces f(0); that is, 

J-00 

This idea used to cause great distress to mathematicians,  some 
of whom even declared that Dirac  was wrong  despite the  fact 
that  he  kept  getting consistent  and  useful  results, The physi- 
cists rejected  these extreme criticisms  and  followed their inttti- 
tion. We can now see  why the physicists  succeeded  despite the 

reservations of the mathematicians. It is true  that  the physi- 
cists spoke of 6 ( t )  as an ordinary  function,  which it cannot be 
in  any precise  sense, and  that  they  treated it as an  ordinary 
function  by integrating it and even differentiating  it. But the 
physicists were justified because they only used 6 ( t )  inside 
integrals  with  sufficiently-differentiable  functions f ( t ) .  For 
example, the derivative  of 6 ( t )  always appeared  inside an in- 
tegral,  and the integral was integrated  by  parts as follows: 

00 

J m  6 ’ ( t )  f ( t )  d t  = - I 6 ( t )  f ’ ( t )  d t  = -f’(O). 
-00 -00 

The physicists  never  used the delta function  except to map 
functions to real numbers. In this sense, they employed the 
machinery but  not  the words of distribution  theory, which 
was  devised  expressly in order to  give delta  functions a sound 
basis. It was the  French  mathematician L. Schwartz  who after 
World War I1 created  a  systematic theory of generalized func- 
tions  and  explained it in his well-known monograph Thiorie 
des  Distn’butions in  1950  and  195 1. From  then  on  the  theory 
of  generalized functions was  developed intensively  by  many 
mathematicians. This precipitate  development of distribution 
theory received its main stimulus  from the  requirements of 
mathematics  and  theoretical physics, in particular the  theory 
of differential  equations  and quantum physics,  Generalized 
functions possess a number of remarkable  properties that ex- 
tend  the  capabilities of classical mathematical analysis, For 
example,  any generalized function  turns  out to be infii tely 
differentiable  (in the generalized meaning),  convergent series 
of generalized functions  may  be  differentiated  termwise  an 
infinite  number of times, the  Fourier  transform of a general- 
ized  function always exists,  and so on. For this  reason, the 
uses  of  generalized function  techniques  substantially  expand 
the range of problems that can be  tackled  and  leads to a p  
preciable simplifications that make otherwise  difficult  opera- 
tions  automatic, 

As science  advances, its  theoretical  statements seem to re- 
quire an  ever higher level of mathematics. When he gave his 
theoretical  prediction of the existence of antiparticles in 193 1 
(hoc.  Roy. SOC. London,  Ser. A, vol. 133, pp.  60-72)  Dirac 
wrote, “It seems  likely that this process of increasing  abstrac- 
tion will continue  in  the  future and that advance in physics  is 
to be  associated  with  a  continual  modification  and generaliza- 
tion of the axioms at  the base of mathematics  rather than  with 
a logical development of any  one  mathematical  scheme  on  a 
fixed  foundation.”  Subsequent  developments  in  theoretical 
physics  have corroborated  this view. In  this essay, we have 
seen that since the  time of Newton,  the search for  and  the 
study of mathematical  models of physical phenomena have 
made it necessary to resort to a wide  range  of mathematical 
tools  and have thus  stimulated  the development of  various 
areas of mathematics. Now let us return to Norbert Wiener in 
1930. 

Physicists are  concerned  with  unlocking the mysteries of 
nature,  and  the impulse  (Dirac  delta) function eases their task. 
The  impulse  function is the simplest of the generalized func- 
tions. One  can  imagine the plight of Wiener in  the  matha 
matical  community when he  introduced generalized random 
functions  into  the  mathematical  literature as early as 1923, 
and especially in his 1930 paper. 

Let us now give the gist of  Wiener’s generalized  harmonic 
analysis. As we know,  convolution in the  time  domain cor- 
responds to multiplication in  the  frequency domain. Thus in 
terms of Fourier  transforms, the above input-output convolu- 
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tion integral  becomes 

X(0) = B ( 0 )  E(o). 
In this equation, E(w) is the Fourier  transform of white 
noise, so that E(o) is a  generalized  function that is white 
(i.e., very rough) in frequency.  The  filter’s  transfer  func- 
tion E(o) is a  smooth well-behaved (ordinary)  function.  The 
product X(w)  is also very rough. 

Let us now  take  the inverse Fourier  transform  of X(&)). 
It is 

which is 

1 =  
x ( n )  = ~ 1 ,  e j w n X ( w )  do 

2.rr e jW”B(w)  E(w) dw. x ( n )  = - 1 ”  

This formula  represents Wiener’s generalized harmonic  analysis 
of x (n) ;  that is, it is the spectral  representation of the  station- 
ary  random  process x ( n ) .  It involves the  smooth  filter trans- 
fer  function B(w) and the very rough  (white  in  frequency) 
process E(w). We thus see that  the spectral  representation 
requires Wiener’s generalized random  function E(o), which 
came out of his studies of Brownian movement. 

Wiener’s generalized  harmonic  analysis (i.e., spectral  repre- 
sentation) explains why the periodogram of Schuster  did not 
work  for  convolutional processes. Because the periodogram 
(as the  number of observations  becomes  large) is 

P(w) = - IX(0)l2 1 
N 

it follows that  the periodogram  has  the  intrinsic  roughness of 
the X(w) process. (It was not  until  the work of J. Tukey [34] 
in  1949  that a means was found  to overcome  this  problem; 
Tukey’s breakthrough was  of epoch proportions.) 

Wiener in his 1930  paper gave the following  method,  which 
was standard  until  the  work of Tukey  in  1949. Wiener’s 
method was intended  for very long  time series. It  consisted 
of computing  the autocovariance  function as the time average 

for - p  Q k G p ,  where p is less than  the  data length N,  and 
then computing the power  spectrum @(a) as the Fourier 
transform 

k = - p  

This Fourier  transform  relationship  between  autocovariance 
and  power  spectrum, as  we have observed, is now called the 
Wiener-Khinchin theorem. 

Whereas von Neumann’s work  in quantum physics  in  1929 
received instant acclaim and well-deserved recognition  by 
physicists  and  mathematicians, Wiener’s work  in 1930 lay 
dormant. However, now with  the  benefit of hindsight, it is 
worthwhile  for us to  reconcile  these two approaches to spec- 
tral  estimation. This we will do  in  the  next section. 

XI. RECONCILIATION OF THE Two SPECTRAL THEORIES 
We have come  a  long way in  the  history of spectral estima- 

tion  to this  point.  From the work of the ancients  in deriving 

a  calendar, to the  work of the great  mathematicians who for- 
mulated the wave equation  in  the  eighteenth century, it took 
thousands of years.  Then the work of Bernoulli,  Euler, and 
Fourier came, and  the result was a  spectral  theory  in  terms 
of sinusoidal  functions, in place at  the beginning of the nine- 
teenth  century. The  theory was extended to the case of arbi- 
trary  orthogonal  functions  by  Sturm  and Liouville, and  this 
led to  the greatest  empirical  success of spectral analysis yet 
obtained:  the physical  results of spectral  estimation that un- 
locked  the secret of the atom.  Credit for this result belongs 
to  Heisenberg  and  Schriidinger  in  1925  and  1926.  Then  in 
1929,  the work of von Neumann put  the spectral theory of 
the  atom  on  a f i m  mathematical  foundation  in his spectral 
representation  theorem.  The  spectral  work of von Neumann 
represents the cumulation of this  line of research in  quantum 
physics. Meanwhile, Rayleigh and  Schuster  at the beginning 
of the  twentieth  century were applying the original  sinusoidal 
methods of Fourier to  the analysis of data  in the realm of 
classical physics. However, the periodogram  approach of 
Schuster did not work well for  purely nondeterministicstation- 
ary random processes, and  this led Yule in  1927 to  develop  a 
spectral  theory  for a subclass known as autoregressive pro- 
cesses. Meanwhile, Wiener had  developed  the  mathematical 
theory of Brownian movement  in  1923,  and  in  1930  he  in- 
troduced  generalized  harmonic  analysis, that is, the spectral 
representation of a  stationary  random process. Thus  in  1930, 
we have two spectral  theories,  one  represented  by the spectral 
representation  theorem of von Neumann  and the  other by the 
spectral  representation theorem of Wiener, It is the purpose 
of this  section,  with  the  benefit of hindsight, of course, to  
indicate  the relationship  between von Neumann  and Wiener 
spectral  theories. 

The common  ground is the Hilbert space. As we have seen, 
the von Neumann  result is the  spectral  representation of a 
Hermitian  operator H in  Hilbert  space.  The  Schrodinger  equa- 
tion is written  in  terms of a  Hermitian  operator,  and this equa- 
tion governs the  spectrum of atoms and  molecules. Now let 
us, however, leave this  Hilbert  space  and  look  at  another  one. 
The other Hilbert  space is one  defined  by the probability mea- 
sure that governs the  stationary  random process in  question. 
As we know,  a  Hilbert  space is specified by an  inner  (or  dot) 
product.  The  elements of the Hilbert  space  are random vari- 
ables,  and  the  inner  product is def ied as the expected value 
given by 

( x , y ) = E x * y .  

(The  superscript  asterisk  indicates the complex  conjugate.) In 
this Hilbert  space,  a  stationary process is defined as follows. 
We use discrete  (integer)  time n,  although a similar develop 
ment can be made  in the case of continuous  time. A sequence 
of random variables x ( n )  in  Hilbert  space is called a stationary 
random  process if its autocorrelation 

@(k) = ( x ( n ) ,   x ( n  + k)) 
depends  only  upon  the  time-shift k and  not  on absolute  time 
n. This definition  implies that  the elements x ( n )  of the pro- 
cess are  generated  recursively by a  unitary  operator;  that is, 

U x ( n ) = x ( n  + 1) 
so that 

x ( n  + k) = Ukx(n) .  
Because a  unitary  operator  represents a rotation, we  see that  a 
stationary  random  process  traces  out  a  spiral  in  Hilbert  space, 
the so-called Wiener  spiral. We now  come to  the connection Authorized licensed use limited to: University of Washington Libraries. Downloaded on May 28,2010 at 14:31:50 UTC from IEEE Xplore.  Restrictions apply. 
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that we are seeking, namely, the  fact  that  the Cayley-Mobius 
transformation  [28] of a  Hermitian operator is a unitary 
operator.  Thus there is a one-bone correspondence  between 
Hermitian operators and unitary  operators  in Hilbert space. 
The von Neumann  spectral representation is for a  Hermitian 
operator. If  we take  its Cayley-Mobius transformation, we 
obtain  the corresponding  spectral  representation for  the uni- 
tary  operator U. This spectral  representation has the  form 

2n 1, e j W Q ( u )  d o  
1 =  u=- 

where Q(o) represents  a family of projection operators as a 
function of circular frequency o. Thus the process has the 
representation 

1 =  
x ( n )  = U ” x ( 0 )  = - 2n 1. e i w ” Q ( u )   x ( 0 )   d o .  

We now make the  identification 

Uu) x (0) = X ( u )  

and we obtain 

1 =  
x ( n )  = ,I, e ’ W ” X ( o )   d o .  

This equation is Wiener’s generalized harmonic analysis of the 
process. Thus we  have the connection we sought;  the  two 
spectral  representations are related by the Cayley-MBbius 
transformation. 

XII. WIENER-LEVINSON PREDICTION THEORY 
Early in 1940, Wiener became involved in defense work at 

MIT and,  in particular, he became interested  in  the design of 
fire-control apparatus  for anti-aircraft guns. The problem was 
to build into  the  control system of the gun some mechanical 
device to  aim the gun automatically.  The  problem, in  effect, 
was made up of two parts:  a  mathematical  part, which con- 
sisted of predicting the  future position of an  airplane from  its 
observed past positions, and an engineering part, which con- 
sisted of realizing the mathematical solution  in  the  form of an 
actual physical device. Wiener recognized that  it was not pos- 
sible t o  develop a  perfect universal predictor, and so he formu- 
lated  the mathematical  problem  on  a  statistical basis.  He 
defined the  optimum  predictor as the  one  that minimizes the 
mean-square prediction  error.  The  minimization led to  the 
Wiener-Hopf integral equation, which represented the comple- 
tion of the mathematical  part of the problem. As to  the engi- 
neering part, Wiener immediately recognized that  it was 
possible to devise a  hardware apparatus  that represents the 
solution to  the Wiener-Hopf equation. As Wiener [29] states 
in his autobiography (p. 245):  “It was not hard to devise a p  
paratus to realize in  the metal  what we had figured out on 
paper. All that we had to  do was make a quite simple as- 
sembly of electric  inductances, voltage resistances, and capaci- 
tors,  acting on a small electric motor of the  sort which you can 
buy  from  any  instrument company.” Wiener’s mathematical 
results [ 241 were published in  1942 as a classified report to 
Section D2  of the National Defense Research Committee. 
This report is Wiener’s famous Time  Series book, which we 
mentioned previously. Its full title is Extrapolation,  Inter- 
polation,  and  Smoothing of Stationary  Time  Series  with 
Engineering  Applications, and it was republished as an un- 
restricted document  in  1949 by MIT Press, Cambridge. 

Although Wiener’s “General  Harmonic Analysis” did not 
have immediate  influence, his Time  Series book, which was 
written  in a  more  understandable  style, did among  those  who 
had access to  the  book  in  1942  and  the general public in 1949. 
As we will now see, a great deal of credit for  the dissemination 
of  Wiener’s ideas belongs to  his former  student and his col- 
league, Professor N. Levinson. 

Levinson’s initial contact with Wiener  was in Wiener’s course 
in 1933-34 on  Fourier Series and Integrals, which is described 
in Levinson’s own words as follows: 

“I became  acquainted  with Wiener in September 1933 while 
s t i l l  an undergraduate student of electrical engineering, when 
I enrolled in his graduate course. It was at  that time really a 
seminar course. At that level he was a  most  stimulating 
teacher. He would actually carry out his research at  the 
blackboard. As soon as I displayed a slight comprehension 
of what he was doing, he  handed me the manuscript of 
Paley-Wiener for revision. I found a gap in a proof and 
proved a  lemma to  set  it right. Wiener thereupon set  down 
at his typewriter, typed my  lemma, affixed my  name  and 
sent  it off to a  journal.  A prominent professor does not 
often  act as a  secretary for a young  student.” 

N. Levinson, a  dynamic  and brilliant mathematician  and a 
warm and  kind  person, made important and  permanent con- 
tributions to  engineering and applied science. The Levinson 
theorem  in  quantum mechanics illustrates his ability to  grasp 
the relationship  between physical concepts  and  mathematical 
structure, Few have this  insight,  and  nowhere is it  better 
demonstrated than  in  the  two  expository papers written  in 
1942 by Levinson soon after  the restricted  publication of 
Wiener’s Time  Series book. These two papers were published 
in  1947  in  the Journal of Mathematical  Physics, and thus they 
represented the first  public disclosure of  Wiener’s time series 
results. Later  these two papers also appeared as Appendices C 
and B in  the unrestricted  publication of  Wiener’s book in 
1949 by MIT  Press 1241. 

An appreciation of Levinson’s contribution can be gained in 
historical perspective. The 1942  edition  of Wiener’s book was 
bound  in a yellow paper cover, and because of its difficult 
mathematics, it came to be known among engineers as the 
“yellow peril” (a term familiar to mathematicians as applying 
to a  famous series of advanced texts). However clear in a 
conceptual way the building of an actual device was to  Wiener, 
there were few engineers at  that  time who were able to grasp 
Wiener‘s mathematical solution, much less to realize it  in  the 
form of a physical device. At this point, Levinson stepped in 
and wrote “A heuristic  exposition of Wiener’s mathematical 
theory of prediction  and filtering,” [301, one of his two 
classic applied papers on explaining Wiener’s work. Levinson 
describes his paper as an expository  account of  Wiener’s 
theory. Levinson’s earlier training was in electrical engineer- 
ing, so he understood hardware design methods.  In the paper, 
Levinson shows in an elementary way why the Wiener-Hopf 
equation  cannot be solved by use of the  Fourier transform 
theorem,  Then, in a natural way, he  introduces  the spectral 
factorization  and obtains  the explicit solution  for  the predic- 
tion  operator  and, more generally, for  the filter  operator. This 
masterpiece of exposition  opened up these methods to  the 
engineering profession. 

Levinson’s other classic applied paper is entitled, “The Wiener 
RMS (root mean square)  error  criterion in filter design and 
prediction.” 131 I As before, let us try  to  put this  paper in 
historical perspective. In 1942,  the Army Air Force Weather 
Division negotiated  a contract with MIT to  perform  statistical Authorized licensed use limited to: University of Washington Libraries. Downloaded on May 28,2010 at 14:31:50 UTC from IEEE Xplore.  Restrictions apply. 
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analyses of meteorological  and  climatological  data,  particularly 
in relationship to weather  forecasting,  and to conduct  research 
into  the  application of statistical  techniques to long-range fore- 
casting [ 321. Professor G.  P. Wadsworth of the MIT Mathe- 
matics  Department was in charge of this  meteorological 
project.  The basic idea was to collect  and sort large amounts 
of numerical  meteorological  data  and to forecast  by analogy, 
much  like the forecasts  made on television today,  in  which  the 
weatherman  looks  at  the  data  appearing  on  the  satellite  picture 
of the earth. Wadsworth’s method  had  merit,  but  the  data 
required was just  not available in the 1940’s.  Wiener’s Time 
Series book was completed  at  about  the  same  time as this 
MIT Meteorological Project was starting up. Since the  weather 
data available occurred  at  discrete  intervals of time,  the 
continuous-time  methods of  Wiener  were not directly  applic- 
able. As a  result,  Wadsworth asked Levinson to write  up  a 
discrete  form of Wiener’s theory, The  result was  Levinson’s 
“Wiener RMS” paper  with  the Levinson recursion. However, 
use  was  never made of Wiener-Levinson prediction  theory  by 
the MIT Meteorological Project,  and Levinson’s paper  sat 
dormant. 

In  order to understand  why Levinson’s methods were not 
used in the 1940’s, one  must  look at  the  computing  facilities 
available at the  time.  The  actual  realization of these  methods 
would have to be carried out  by  people using hand  calculators. 
A  hand  calculator could add,  subtract,  multiply,  and divide, 
but  had  no  memory  except an accumulator.  Thus  the  result 
of each  separate  calculation  had to be transferred to paper  by 
hand,  a  drawn-out,  time-consuming process. In  contrast to the 
hardware devices working in real  time, as envisaged by Wiener, 
the  hand  calculator was a  poor  substitute. As Wiener [24, 
p. 1021  states: “Much less important,  though of real interest, 
is the  problem of the  numerical  filter  for  statistical  work, as 
contrasted  with  the  filter as a physically active piece of  engi- 
neering  apparatus.” 

After Levinson wrote his two  expository papers, which were 
completed  in  1942,  neither  he  nor Wiener took  up  research in 
the  computational  (software)  aspect of  Wiener’s theory. 
Wiener  was more  interested  in  its  realization by machines 
(hardware),  and his research  interest was already shifting to 
biological and medical problems. In fact, it was the  union 
of these  two  research  interests  that led to his discovery and 
formulation of the science of cybernetics,  which  he describes 
as the  problem of control  and  communication  in  machines  and 
animals. Meanwhile  Levinson had  decided as early as 1940 to 
shift his field from  the  Fourier  methods of  Wiener to  the field 
of nonlinear  differential  equations. He talked  about  this 
decision with his friends in  1940. Levinson worked  hard over 
a  period of two  or  three  years  (which  included  the  period  dur- 
ing which  he  wrote the  two  expository  papers)  before  he  felt 
that  he  had  enough  mastery in his new field. Such  mastery he 
did achieve, and his outstanding  contributions to differential 
equations were recognized by his receiving the prestigious 
Bocher Prize in  Mathematics  in  1954. 

Despite their other research interests, both Wiener and 
Levinson  were always ready to give their support  and  time to 
the MIT Meteorological Project  directed  by G. P. Wadsworth. 
Wiener  was especially interested  in seeing physical examples of 
autocorrelation  functions. This interest  led to  the computa- 
tion of  several autocorrelation  functions of ocean wave data 
by  Wadsworth  and by his friend  and  associate H. R. Seiwell 
[33], who was with  the Woods Hole  Oceanographic  Institu- 
tion.  The  interest  in  these computations  led to  the ‘‘SympG 

sium  on  Autocorrelation Analysis Applied to Physical Prob  
lems” held  at Woods Hole, MA in June  1949,  sponsored  by  the 
Office of  Naval Research,  The high point of this  meeting was 
the  paper by Tukey [34],  Before Tukey’s work,  the power 
spectra  computed  from  empirical  autocorrelation  functions 
were too erratic. to be of any use in  formulating physical hy- 
potheses.  Not  only did Tukey  show  correctly  how to compute 
power  spectra  from  empirical  data,  but he also laid the statisti- 
cal framework  for  the analysis of short-time series, as opposed 
to the very long  ones envisaged by Wiener and Levinson. 

Wadsworth was also director of the MIT section of the U.S. 
Naval Operations  Evaluation  Group,  a  project  started  in World 
War  I1 which  initiated the use  of operations research in the 
United  States. By 1950, Wadsworth was applying  operations 
research  methods to  industry  and  had  established himself as 
one of the highest paid consultants  in  the  United  States. 
There were so many  industrial  people waiting to see him in 
his outer office at MIT that  one  had to make an appointment 
with his secretary  many weeks in advance to see him in his 
inner  office for just 5 or  10  minutes  at  the most. The  writer 
began as one of  Wadsworth‘s research  assistants  in the MIT 
Mathematics  Department  in  September  1950,  and  he was as- 
signed to work  in seismology by Professor Wadsworth. Mobil 
Oil made available eight seismic records,  and  the  writer im- 
mediately  got a very lonely feeling, especially at MIT at  night 
digitizing the Mobil seismic records  with  a  ruler  and  pencil, 
Except  for Wadsworth, in  1950  nobody  at MIT or  in  the oil 
industry  thought  that  the analysis of digital seismic data would 
ever  be feasible. 

Fortunately  Tukey  took an interest in the seismic project 
and  conveyed his research ideas  by mail. The  first  empirical 
results were the  computation of the  Tukey  spectra  for various 
sections of the Mobil records  in  the  spring of 195 1. From 
these  spectral  results,  a seismic analysis based on  prediction 
error was formulated  in  the  summer of 195  1, This analysis 
made use  of  Wiener prediction  theory  in  digital form. Prior 
to this work, Wiener’s procedures  had  only  been realized in 
analog  form.  In  hand  plotting  the f i t  numerical  results of 
what  today is called linear  predictive  coding (LPC), the  writer 
was so amazed that  he could not believe his eyes, and he was 
sure  that  he would never see such  good  results again. But the 
second  trace,  and the  third trace,  and so on, were computed 
and  confumed  what  he saw. The  digital processing method 
called deconvolution  worked! As soon as possible, he  made 
an appointment  to see Wadsworth,  which the  secretary set 
three weeks from  then, in  September  195 1. The  result was 
that  the digitally-processed seismic traces  [351 were sent  out 
to  the oil industry,  and  the oil companies gave money to sup 
port a  project.  The MIT Geophysical Analysis Group was thus 
born,  and  the MIT Whirlwind digital  computer was  used to 
analyze seismic records  throughout  the lifetime of the GAG 
(1952-1957). During this  period,  Tukey  freely gave his re- 
search advice [ 361, [ 371.  For  example, Tukey’s methods  for 
estimating  coherency  (today called by various names, such as 
“semblance”  by  the oil industry) are vital in the  estimation of 
seismic velocity as well as in other  multichannel  methods. 
Tukey’s  vision of a  fast  Fourier  transform was always in- 
fluential.  In  fact, s. M. Simpson [38], who  later  directed 
the Geophysical Analysis Group,  eventually devised  an  ef- 
ficient 24-point  Fourier  transform,  which was a  precursor to 
the Cooley-Tukey  fast  Fourier  transform  in  1965.  The FFT 
made all  of Simpson’s efficient  autocorrelation  and  spectrum 
programs instantly  obsolete,  on  which  he  had  worked  the 
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equivalent of  half a  lifetime. Wiener  was very generous of his 
time  [39]. Wiener’s work [40],  [41]  on multichannel  meth- 
ods was helpful later  in  extending  the Levinson recursion, 
which Levinson had devised for single channel  time series, to 
the multichannel case [421. The  excellent seismic data  and 
corresponding well logs supplied by the oil industry to  the 
Geophysical Analysis Group made possible the development 
of the statistical minimum-delay model of the earth’s  strati- 
graphic layers, together with the  theoretical justification of 
seismic deconvolution [ 191,  [43]. 

In  the  late 1950’s a digital revolution  occurred because of 
the  introduction of transistors in  the building of digital com- 
puters, which made possible reliable computers at a  much 
lower cost than previously. As a  result, the seismic industry 
completely  converted to  digital technology in  the early 1960’s, 
a long  ten years after  the first digital results were obtained. 
Since then, nearly every seismic record taken  in  the explora- 
tion of oil and natural gas has been digitally deconvolved and 
otherwise digitally processed by these  methods.  The final 
result of the digital processing of seismic data was the dis- 
covery of great oil fields which could not be found  by analog 
methods. These oil fields include  most of the offshore dis- 
coveries, as in  the  North Sea, the Gulf of Mexico, the Persian 
Gulf, as well as great onshore discoveries in Alaska, Asia, 
Africa, Latin America, and the Middle East, made in  the last 
twenty years, Today an oil company will deconvolve and 
process as many as one million seismic traces per day;  it  took 
a whole summer in 195 1 to  do  32 traces. 

Whereas the digital revolution came first to  the geophysical 
industry largely because of the  tremendous accuracy  and flexi- 
bility afforded by large digital computers, today we are in  the 
midst of a universal digital revolution of epic  proportions. One 
now realizes that  the work of Wiener and Levinson is being 
appreciated  and used by an ever-increasing number of people. 
Digital signal processing is a growing and  dynamic field which 
involves the  exploration of new technology  and the applica- 
tion of the techniques to new fields. The  technology has 
advanced from discrete semiconductor  components t o  very 
largescale  integration (VLSI)  with densities above 100 000 
components per silicon chip. The availability of fast, low-cost 
microprocessors and custom high-density integrated  circuits 
means that increasingly difficult  and  complex  mathematical 
methods can be reduced to hardware devices as originally 
envisaged by Wiener, except  the devices are digital instead of 
analog. For example,  a  custom VLSI implementation of 
linear predictive coding is now possible, requiring  a small 
number of custom chips, Whereas originally digital methods 
were used at great expense  only because the application de- 
manded high flexibility  and  accuracy, we have now reached 
the  point  that  anticipated long-term cost advantages have 
become  a significant factor  for  the use of digital rather  than 
analog methods. 

XIII. TUKEY EMPIRICAL SPECTRAL ANALYSIS 

As  we have mentioned,  a turning  point  in  the empirical 
analysis of time series data began in 1949  at  the Woods Hole 
Symposium on Applications of Autocorrelation Analysis, 
There  Tukey  presented the f i t  of three papers [34],  [36], 
[37], which he had written  in  the early years on  spectrum 
analysis. These papers introduced  the classic Tukey  method 
of numerical  spectral estimation, a method  that has been used 
by most workers since that time. In addition, Tukey described 
an approximate distribution for  the estimate. This distribu 

tion was required for  the proper design of experiments for  the 
collection of time series data. In  a very interesting  paper [44], 
Tukey describes the  situation which  led to his spectral  work, 
including  a discussion of Hamming’s suggestion about  the 
smoothing of the discrete Fourier transform of an empirical 
autocorrelation, which  led to  the  joint work of Hamming and 
Tukey. 

During the last four decades, Tukey [45]-[ 501 introduced 
a multitude of terms and  techniques that are standard to  the 
practice of the  data analysis of time series. Such  common- 
place terms  and  concepts as “prewhitening,” “aliasing,” 
“smoothing and  decimation,”  “tapering,”  “bispectrum,” 
“complex  demodulation,”  and “cepstrum” are due to Tukey. 
Very few papers in  the  literature of applied time series analysis 
do  not give some  acknowledgment of Tukey’s ideas and  meth- 
ods, and  most  papers  credit his ideas in some vital way.  More- 
over, Tukey [51]-[551 has made  substantial contributions  in 
the placing of the data analysis of time series into perspective 
with current research in  the physical sciences, in statistics,  and 
in computing  and numerical analysis. 

We have already  mentioned the key  influence  Tukey  had on 
the MIT group, which included Wadsworth, Simpson, the 
writer,  and  others. W. J. Pierson and L. J. Tick [56]  at New 
York University used Tukey’s methods  in  the analysis of 
oceanographic time series records. The  outstanding thesis of 
Goodman [ 571, which extended  the results of Tukey to  the 
bivariate case, was written under Tukey’s supervision. The 
group  at La Jolla, CA, which included Munk, Rudnick,  and 
Snodgrass, applied Tukey’s spectral methods to estimate wave 
motion due to  storms many  thousands of miles away; a 
testimony to  the power of his methods. Munk and McDonald 
wrote  a  remarkable  book, The Roration of the  Earth [58], 
which used these  spectral methods in several novel ways. 

In this period, packages of computer programs for  time 
series analysis were appearing. The  collection of programs by 
Healy [59] of Bell Laboratories were circulated from  1960 
on. The BOMM collection of programs [ 601 was developed at 
La Jolla. Some of the programs used by Parzen were included 
in his book  [61]. The programs written  at MIT are described 
in  [381 and 1621. 

In econometrics, Granger’s book [ 631 in 1964 described 
many of the techniques suggested by Tukey  for the analysis 
of univariate and bivariate time series. The  most successful 
application of spectrum techniques to  economic series is its 
use for  the description of the  multitude of procedures of 
seasonal adjustment. In astronomy, Neyman and Scott  [64] 
in 1958 carried out  the analysis of two-dimensional data 
consisting of the positions of the images of galaxies on  phot@ 
graphic plates. 

Norbert Wiener remained active until his death  in 1964. His 
later work included both empirical  results, such as modeling 
and analyzing brain waves [661,  [671, and  theoretical results, 
such as his work  with Masani on multivariate  prediction theory 
[40],  [41]. Wiener’s death marks the  end of an era in time 
series analysis and  spectral theory. 

W. THE COOLEY-TUKEY FAST FOURIER TRANSFORM 
The present epoch of time series analysis began in  1965 with 

the publication of the fast Fourier transform by Cooley and 
Tukey [ 681.  The effect  that this  paper has had on scientific 
and engineering practice cannot be overstated, The paper 
described an  algorithm for  the discrete Fourier transform of 
T = TI - - T p  values by means of T(T1 + * - + T p )  multi- 
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plications  instead of the naive number T2. Although  such 
algorithms  existed previously [69],  they seem not  to have 
been put  to much use. Sande  developed  a  distinct,  symmetri- 
cally related  algorithm  simultaneously  and  independently. 

The  existence of such  an  algorithm  meant,  for  example, that 
the following  things  could be computed  an  order of magnitude 
more  rapidly:  spectrum  estimates,  correlograms,  filtered ver- 
sions of series, complex  demodulates,  and  Laplace  transforms 
(see, for example, [70]). General discussions of the uses and 
importance of fast  Fourier  transform  algorithms  may be found 
in [7 1  ]  and [ 721.  The  Fourier  transform of an observed 
stretch of series can now be taken as a  basic  statistic  and clas- 
sical  statistical analyses-such as multiple regression, analysis 
of variance,  principal  components,  canonical  analysis,  errors in 
variables, and  discrimination-can be meaningfully  applied to 
its values, [73] and  references  cited  therein.  Higher-order 
spectra may be computed practically [74]. inexpensive  por- 
table  computers  for  carrying out spectral  analysis have a p  
peared on  the market  and may be found  in  many small 
laboratories. 

The  years  since  1965 have been  characterized  by the knowl- 
edge that  there are  fast  Fourier  transform  algorithms.  They 
have also been  characterized  by the rapid  spread of type of 
data  analyzed.  Previously, the  data analyzed  consisted  almost 
totally of discrete or  continuous real-valued time series. Now 
the  joint analysis of many series,  such as the  625 recorded  by 
the Large Aperture Seismic Array in Montana [ 75 1, has be- 
come  common.  Spatial  series  are  analyzed [75]. The  statisti- 
cal analysis of point processes has  grown into an entirely 
separate field [761.  The SASE iV computer program de- 
veloped by Peter Lewis [771  has  furthered  such  analysis  con- 
siderably. We note  that transforms other  than  the  Fourier 
are  finding  interest as well [ 781, [ 791. 

XV. BURG MAXIMUM ENTROPY SPECTRAL ANALYSIS 

The  discrete  Fourier  transform of the autocovariance is 
called the power  spectrum.  Thus the power  spectrum of a 
stationary  time series with  autocovariance @(n)  is 

@(a)= 2 $(n)e-’W” (for - n < a Q n ) .  (1) 
n =-00 

In this  discussion, we do  not require the autocovariance to  be 
normalized, so @(O) does not have to be one. If  we know the 
entire  autocovariance  function, that is, if we know @(n)  for all 
values of n, then, of course, we can obtain  the power  spectrum 
by means of (1). However, in  many  applications, we know  or 
can reliably measure the autocovariance  only  for  a  certain 
finite  number of values of n,  say  for n = 0, 1, 2, * - , p .  B e  
cause the autocovariance is symmetrical @(n) = @(-n) ,  we thus 
know  the values of $(n) for n = 0, +l,  +2, * , + p ,  and we do 
not know @ ( n )  for In I > p .  The  question is how should we esti- 
mate the power  spectrum  (1)  from  only  this  partial  knowledge. 

In  order to answer  this  question, we should  first  consider the 
phenomenon under  study. As there  are  many  different  types 
of phenomena,  there is a  corresponding  diversity  in  spectrum 
analysis. Brillinger and  Tukey state  that  no  distinction is more 
vital than  that among a) noise-like processes, b) signal-like 
processes, and c) signal-plus-noise processes. While b) is or- 
dinarily  unrealistic,  there  are  enough cases of c)  with  only  a 
slight amount of noise so that  b) is a  helpful  idealization. 

A  noiselike process produces  time series quite  different  in 
character  than  those  produced  by  a signal-like process. The 

regularity of a noise-like process  does not lie in  the shapes of 
its individual  realizations, but  in  its underlying  statistical  struc- 
ture. As a  result,  different  realizations usually do  not appear 
to resemble  each  other. A segment of  one realization  generally 
will neither  look  the  same  nor have the same  empirical aut@ 
covariances as the corresponding  segment  of  another realiza- 
tion.  Anyone using the autocovariance from  a given realiza- 
tion as a  “known” autocovariance,  and then  fitting this 
“known” autocovariance  exactly, is likely to  be in worse error 
than if he  does  not. As Brillinger and  Tukey  point out, we 
often have only  one  distinct  realization,  and we need to make 
as good  inferences as  we can about  the underlying  population. 
We have to  think  statistically,  and  treat  our  numerical  results 
with  due  consideration as to  the tentative  nature of the struc- 
tural  and  stochastic  assumptions  built  into  the  model.  It is for 
data  near the  noiseprocess  end of the  continuum  that many  of 
the  Fourier  methods of spectrum  estimation  are  intended  and 
are  most  effective. 

At the  other  extreme are the signal-like processes. Some of 
the best  examples of such  processes  are  found  in  exploration 
seismology. A  concentrated  energy  source  produces  a seismic 
record. Because the random  background  noise is usually weak, 
the record will appear  essentially the same as another  one 
taken  at  the same place at  a  different time. As Brillinger and 
Tukey  point out,  the  study of signal-like processes may  well be 
done by quite  different  methods. 

Also there is another  aspect of spectrum  analysis,  one to 
which the  limitations of the  data have forced  many  applied 
research  workers. Here the models  are not narrowly  restricted 
by reliable  subject-matter  knowledge.  The time-series records 
are not long,  and  the  appearance of the  data is not distinctive. 
Corresponding  records  do not  look alike. With almost  nothing 
to work  with,  the  research  workers can do  nothing  much  more 
than  fitting  a few constants.  Thus  they  fit  low-order AR, MA, 
and ARMA models usings the Box-Jenkins [ 931  methodology. 
As B W g e r  and  Tukey  observe,  this  approach in a large num- 
ber of applications  seems to work  much better  than might be 
anticipated. 

The  basic issue in  spectrum  estimation is the proper  choice 
of  model  and  then the resulting  choice of the  method of spec- 
trum  estimation [ 1021.  Application of a  particular  spectral 
estimator to  an  inappropriate  model can result in serious 
specification  errors. 

Let us now return to the  question  in  point, namely,  how 
we should  estimate  the  power  spectrum  from  a  limited  section 
of  the autocovariance. Most research  workers who calculate 
and use only a limited number of autocovariances do  not as- 
sume that all the  later ones vanish. They use the earlier values 
to calculate a quadratic  function of the  data whose average 
value (across  the  ensemble),  like all other  quadratic  functions 
of the  data, is the  integral of a  knowable  kernel  with the spec- 
trum.  They  then  interpret  their  result  accordingly.  One  must 
not charge these  workers  with  making  any  assumption  about 
the uncalculated  autocovariances. What they usually do is to  
recognize that  the empirical  autocovariances that  they  do 
calculate will vary from  realization to realization, and so they 
do  not and  should not  take  the empirical values as absolute 
truth. 

One of the purposes of this historical essay is to  try  to give 
the flavor  of important developments  in  spectrum  estimation. 
Unfortunately,  the  writer did not  attend  the  37th Meeting of 
the Society of Exploration  Geophysicists in 1967,  although  he 
attended  the  meetings  in  the  years  both  before  and  after  that 
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one. It was at  that meeting in  Oklahoma  City  that John Burg 
presented  a  paper that was to shake the  foundations of spec- 
trum estimation. This fundamental  work [80] is entitled 
Maximum  Entropy  Spectral  Analysis and  its  abstract  reads: 

"The usual digital method of obtaining  a  power  spectrum 
estimate  from  a measured autocovariance function makes the 
assumption  that  the correlation function is zero at all  lags 
for which no estimate is available and uses some treatment 
of the  estimated lags to reduce  the  effect of truncation of 
the autocovariance  function.  The method discussed in this 
paper  instead  retains all  of the  estimated lags without 
modification  and uses a  nonzero  estimate  for  the lags not 
directly  estimated.  The  particular  estimation principle  used 
is that  the  spectral  estimate must be the most  random  or 
have the maximum entropy of any power  spectrum  which is 
consistent  with  the measured  data. This new  analysis 
technique gives a  much  higher  resolution  spectral  estimate 
than is obtained by conventional  techniques  with  a very 
little  increase in  computing time. Comparisons will illustrate 
the relative importance." 

The  estimation of the power  spectrum of stationary  time 
series from  partial  knowledge of its autocovariance function 
is a classical problem to which  much attention has been given 
over the years.  Almost all of this  work is based on  the use  of 
window  functions, whose properties can be  analyzed  by 
Fourier  methods. Burg [go],  [8 11, [ 821 in his pioneering 
work introduced a new philosophy in  spectral analysis  based 
on general variational principles, and,  in particular, the maxi- 
mum  entropy  method (MEM) which we will now discuss. 

The  conventional  approach to estimating the power spec- 
trum  from @(n), In1 Q p ,  is to assume that @(n) = 0 for n > p  
and to take  the  Fourier  transform of w ( n )  @(n), In1 Q p ,  
where w ( n )  is a weighting function. We now  want to describe 
the  maximum  entropy  method of  Burg. 

Given a  limited  set of autocovariance  coefficients  together 
with  the  fact  that a  power  spectrum @(a) must  be non-nega- 
tive, we know  that  there are generally  an infinite  number of 
power  spectra  in  agreement  with  this  information. Thus ad- 
ditional  information is required,  and  a  reasonable goal is to 
find  a single function @(a), which is representative of the 
class of all possible spectra. In order to resolve this  problem, 
some  choice  has to be made, and Burg made use  of the con- 
cept of entropy. Maximum entropy  spectral analysis is based 
on  choosing that  spectrum which  corresponds to  the most 
random or the most  unpredictable time-series  whose aut@ 
covariance coincides  with the given set of values. This con- 
cept of maximum entropy is the same as that used in  both 
statistical  mechanics  and  information  theory,  and as we will 
see represents the most  noncommittal  assumption possible with 
regard to the  unknown values of the autocovariance  function. 

Equation  (1) gives the power  spectrum @(a) as the discrete 
Fourier  transform of the autocovariance function @(n). From 
Fourier  theory, we know  that  the autocovariance function can 
be  obtained as the inverse Fourier  transform of the power 
spectrum;  that is 

1 "  
@(n) = @(a) eiwn dw (for all integers n). (2) 

The fundamental  assumption involved in maximum  entropy 
spectral analysis is that  the  stationary process under considera- 
tion is the most  random  or  the least  predictable  time series 

that is consistent  with the given measurements, Specifically, 
the given measurements  are the  known autocovariance coef- 
ficients,  namely 

In  terms of information  theory, we require that  the  entropy 
per  sample of time series is a  maximum.  From the work  of 
Shannon  in  1948, it follows that  the  entropy is proportional 
to the integral of the logarithm of the power  spectrum,  that is, 
the  entropy is 

1: log @(a) d o .  (4) 

Therefore  the  required  maximum  entropy  power  spectrum is 
that  function @(w) which maximizes (4) under  the  constraint 
equations (3). 

One  way to solve the problem of finding the maximum en- 
tropy power  spectrum  subject to fixed values of @(n) for 
1 n I < p is by use of Lagrange multipliers. However,  we  may 
instead use the following  approach. From  (1) we  see that  the 
partial derivative of @(a) with  respect to @(n) is 

It follows that 

Now let us maximize (4) with  respect to  the unknown values 
@(n) where 1 n 1 > p .  Thus we set  the partial derivatives of (4) 
with  respect to @(n) for In I > p equal to zero;  that is 

for In1 > p .  ( 6 )  

Making  use  of (5), we  see that ( 6 )  reduces to 

[@(o)l- '  e-iwn dw = 0, for In I > p .  (7)  

This equation specifies the  form of the inverse power  spectrum 
[@(a)]  -' of a  maximum  entropy process. Let us explain. 

Given any  stationary process with positive power  spectrum 
@(a), then  its inverse power  spectrum 

is also positive. We assume that  the inverse power  spectrum is 
integrable  and  bounded, so that  it is a well-behaved power 
spectrum  in  its own right. Thus the inverse power  spectrum 
(8) can be  associated  with an autocovariance  function,  which 
we designate  by Jl(n), such  that  the  counterparts of (1) and 
(2) hold,  namely 
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and 

(10) 

Because  we do  not normalize, the zero-lag  value $ (0) does not 
have to be  one. 

Let us now  return to the maximum entropy process. As we 
have  seen, its inverse power  spectrum satisfies (7)  for In1 > p .  
In (7) replace n by -n ,  and also multiply  each  side of the equa- 
tion by 1/27~. Thus we obtain 

1 =  - 
2n I, [ @ ( o ) ~ - ' e ' ~ ~ d w = ~ ,  for ~ n l > ~ .  (11) 

Comparing (1  1) with  (1 0), we  see that  for a  maximum entropy 
process  we  have 

$ ( n ) = O ,  for Inl>p. (12) 

Hence,  using (12)  in  (9), we  see that  the inverse power speo 
trum of a  maximum entropy process is 

[+(a) ]  -1  = 5 IC, (n) e-iwn. (13) 
n = - p  

The right-hand side of (13) is a  finite  trigonometric series. 
Thus we have shown  that  the maximum entropy process is one 
whose  inverse power  spectrum is a  finite  trigonometric series, 
or  equivalently  one whose power  spectrum is the reciprocal of 
a  finite  trigonometric series, that is 

@.(a) = 
1 

(14) f $(n) e-iwn 
n = - p  

If  we let z = e l w ,  then  the  finite  trigonometric series (13) 
becomes 

This can be  factored by the Fej6r method  (Robinson  [43, 
p. 1941) as 

$(n)z-" =-[l  +alz-l + *  " + a p z - q  
P 1 

n = - p  U2 

- [ l  + a l z + * * * + a p z P ]  (15) 

where u2 is a positive constant  and where 

~ ( z )  = 1 + alz- '  + * * * + a p z - p  (16) 

is minimumdelay (i.e., where A ( z )  has no zeros on  or out- 
side the unit circle). Thus the maximum-entropy process is 
specified  by 

-2 

@ ( z )  = 
(I 

A ( z ) A ( z - ' )  * 

This result  shows that  the maximum entropy process is an  AR 
process  of order p .  

Silvia and  Robinson [ 831, through  the use of lattice  methods, 
have related the  concept of maximum entropy to the geophys- 

ical inverse problem.  Itakura  and  Saito 1841  were responsible 
for  introducing  two  important ideas into spectrum  estimation 
that are now gaining  wide acceptance  in  the  engineering 
world. The first idea is that  of using maximum  likelihood in 
spectrum  estimation.  Although the idea  itself was not new, 
their  introduction of a  particular  gpectrum  distance  measure 
is becoming  more  and  more important  for  different applica- 
tions,  such as speech. Parzen [85] gives the  name information 
divergence to this measure, which is the same as the Kullback- 
Leibler information  number. He also shows its  relation to  the 
notion of cross-entropy. The  second  idea is that of using the 
lattice as a  filter structure  for  the  purpose of  analysis (as an 
all-zero filter)  and  synthesis (as an ail-pole filter).  The  idea of 
an adaptive  lattice was fmt proposed  by  Itakura  and  Saito as a 
way of estimating the  partial  correlation  (PARCOR) coef- 
ficients  (a term  they  coined) adaptively.  Makhoul [86] has 
shown  how Burg's technique is really a special  case of lattice 
analysis. Also, the  lattice has  become important because  of its 
fast convergence and its relative insensitivity to roundoff 
errors. 

XW. STATISTICAL THEORY OF SPECTRUM ESTIMATION 
Since the pioneering  work of Tukey  [341  in  1949,  many 

important  contributions have been  made to  the statistical 
theory of spectrum  estimation. An adequate  treatment would 
require  a  long  paper  in  itself,  and so all we can hope to  do here 
is to  raise the reader's  consciousness  concerning the statistical 
theory required to understand  and  implement  spectrum 
estimation. 

The  writer  has  great  admiration  for  the  work of Parzen, 
who  from  the 1950's to the present  time  has  consistently 
made bedrock  contributions  both  in  theory  and applications 
[61], [ 8 5 ] ,  [87],  [88]. His long series of papers  on time 
series analysis include  the  famous Parzen window for spec- 
trum analysis. Another  one of  Parzen's important  contribu- 
tions is his formulation of the  time series analysis problem in 
terms of reproducing  kernel  Hilbert spaces. A remarkable 
number of  Ph.D. theses on  time series analysis  have been 
written  under  the  direction of Parzen, more than any other 
person.  The  writer  has  had the good fortune to discuss  geo- 
physical time-series problems  with  Professor Parzen  over the 
years, and  in every  case Parzen  has  been  able to provide  impor- 
tant physical  insight in  the application of the statistical  meth- 
ods. The Harvard lectures  by  Professor Parzen in  1976 repre- 
sent  one of the high  points  in  time series analysis and  spectrum 
estimation ever to be  heard in  those venerable halls. 

The  book  by  Grenander  and  Rosenblatt  [651  in  1957 for- 
malized many of the  data analysis procedures  and  approxima- 
tions  that have come into use. They have an  extensive  treat- 
ment of the  problem of choice of window and  bandwidth. 
The  further  contributions to this  problem  by  Parzen  and by 
Jenkins are discussed in  the  1961 paper of Tukey [ 5 1 1. An 
accurate  and  informative  account of the developments of speo 
trum  estimation  in  the  1950's is given by  Tukey [44]. 

Another  important  statistical development that deserves 
mention is the alignment issue in  the  estimation of coherence, 
worked on in the 1960's by Akaike and  Yamanouch,  by 
Priestley,  and by Parzen.  Discussions  of this  work  and the 
references can be found  in  the  book by Priestley [89]. This 
excellent  book,  which  appeared in  1981,  has  already  set  a  new 
standard. It can be  recommended as an  authoritative  account 
of the  statistical  theory of spectrum  estimation,  which we only 
touch  upon  in this  section. 
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H.  Wold coined the names  “moving average  process” and 
“autoregressive process” in his 1938 thesis [90]  under Profes- 
sor Harald  CramCr at  Stockholm University. In his thesis, 
Wold computed  a  model of the yearly level of Lake  Vaner in 
Sweden as a moving  average  of the  current rainfall  and the 
previous  year’s rainfall. He also computed  an autoregressive 
model of the business  cycle in Sweden for  the years  1843- 
1913.  In  turn, Whittle wrote his 1951 thesis [91] under Pro- 
fessor  Wold at Uppsala  University. Whittle  opened up and 
made important  contributions to  the field of hypothesis  test- 
ing in  timaseries analysis. Whittle’s careful  work is exemplified 
by his autoregressive  analysis  of a  seiche  record [92]  in which 
he fits  a  low level autoregressive model to  the  data  and gives 
statistical  tests to determine  the  appropriateness of the model. 
Professor  Whittle  used to return to Sweden for visits, and  the 
writer  remembers  taking  long walks with  him  through the 
Uppsala countryside  exploring  for old runestones  and  ancient 
Viking mounds.  Although the writer  had left  the University 
of  Wisconsin to  work  with  Professor Wold in Sweden, it  turned 
out  that Wisconsin under the leadership of Professor G. Box 
became the real  center of time series analysis. It was the  joint 
work of Box with  Professor G. M. Jenkins [93]  that  actually 
brought  the autoregressive (AR) process and  the moving  aver- 
age (MA) process to the  attention of the general scientific 
community.  The brilliance of this  work has made  the names 
Box-Jenkins synonymous  with time-series analysis. No achieve- 
ment is better deserved. No person  understands  data  better 
than Box in  the application of statistical methods to obtain 
meaningful  results. 
In the 1960’s  Parzen [87] and  Akaike  [941 discussed auto- 

regressive spectrum  estimation,  and this work  led to their 
crucial  work on autoregressive order-determining  criteria [88] 
and  [95]. Such  criteria have made possible the widespread 
application of  autoregressive spectrum  estimation  by re- 
searchers  in diverse scientific fields. Akaike  has provided a 
link  between  statistics  and  control  theory  with  deep  and signif- 
icant  results,  and his work is of the highest tradition  that 
science can  provide. Young  research  workers can learn  much 
by  studying his writings  well. 

We wish we had  more  space  and  knowledge to expand  upon 
this  section,  and  those  many  statisticians  whom we  have not 
mentioned  should  remember  that  this  history is by no means 
the final word. Someday we hope to write  more  fully on this 
subject,  and we  welcome all comments  and suggestions. 

XVII. ENGINEERING USE  OF SPECTRAL ESTIMATION 
The  purpose of this  section is only to refer to  the rest of the 

papers in this special  issue  of the Proceedings of the  IEEE. 
These other papers cover the engineering use  of spectral esti- 
mation  much  better  than we could do here.  There  papers 
represent  a living history of the present status of spectral 
estimation,  and,  in  them  and  in  the  references  which  they 
give, the reader can find  the  works of the  people  who have 
made  spectral analysis and  estimation  a vital scientific  discipline 
today. As general references, we would especially like to men- 
tion  the  1978 IEEE book  edited  by  Childers [96], Haykin 
[971,  the RADC Spectrum  Estimation  Workshop [98],  the 
First  IEEE ASSP Workshop  on  Spectral  Estimation [99], and 
Ulrych and Bishop [ 1001.  Although much progress has  been 
made, much  work  yet remains to be  done,  and  there is adven- 
ture  for a  research  worker  who  sets his course in this  rewarding 
and exciting field. 

ACKNOWLEDGMENT 
I  want to express  my  sincere  appreciation to Prof. D. R. 

Brillinger who  let me freely use his paper,  “Some  history of 
data analysis of time series in the United  States,” in History 
of Statistics in the  United  States, edited  by D. B. Owen and 
published  by Marcel Dekker in  1976. I want to thank Dr. J .  
Makhoul for sending me notes on maximum  likelihood  and 
lattice  networks. I want to  especially thank  the  authors cited 
in  the Reference  Section whose constructive  comments ma- 
terially  improved  this paper. In writing  an  historical  paper, 
we should  include  a  thousand  references  instead of one hun- 
dred, so important statistical  contributions have unfortunately 
been left  out. Of course, we  have purposely not included engi- 
neering  contributions (as they are covered in  the rest of this 
special issue) but there is never a clear cut line,  and so in  this 
sense other  important work  has also been left  out. However, 
all such omissions are not  intentional, and we  will  gladly try 
to rectify  any  situation in some  appropriate  future publica- 
tion.  Finally,  most of all, I want to thank Prof. J.  Tukey  for 
the  support and  help  he gave  me on spectrum  estimation  thirty 
years ago at MIT for which I am forever  grateful. 

REFERENCES 

[ 1 ] I. Newton, Optics London,  England, 1704. 
[ 21  B. Taylor, Methodus  Zncrementomm  Directa et  Inverse. Lon- 

(41 L. Euler, Znsritutiones Calculi Differentialis St. Petersburg, 
[ 31 D. Bernoulli, Hydrodynamics Basel,  Switzerland, 1738. 

[ 51 J. L. Lagrange, Thkorie des  Fonctions  Analytiques Paris, 

don, England, 171 5. 

Russia, 1755. 

France, 1759. 
[ a ]  J. Fourier, Thkorie Analytique  de la Chaleur. Paris, France: 

[ 71 C. Sturm,  “Memoire  sur  les  kquations  diffkrentielles  linkaires  du 
Didot, 1822. 

second  ordre,” Journal de  Mathkmatiques Pures et  Appliquies, 

[ 81 J. Liouville,  “Premier  mkmoire  sur  la  thkorie  des  kquations  dif- 
Paris, France,  Series 1 ,  vol. 1,  pp. 106-186,  1836. 

skries,” Journal de  Mathimatiques Pures et  Appliquies, Paris, 
firentielles linkaries et sur le  developpement  des  fonctions  en 

[ 91  G. Green, Essay on the Application of Mathematical  Analysis to 
France,  Series 1 ,  vol. 3, pp. 561-614,  1838. 

the Theories of Electricity and M a g n e w  Nottingham, En- 

[ 101 E. Schrodinger, Collected Papers on Wave Mechanics London, 
land, 1828. 

England:  Blackie, 1928. 
[ 111 W. Heisenberg, The Physical Principles of Quantum  Theory. 

Chicago, IL: University of Chicago  Press, 1930. 
[ 121 J. von  Neumann,  “Eigenwerttheorie  Hermitescher  Funcktional- 

operatoren,”Math Ann., voL 102, p. 49,  1929. 
[ 131 -, Mathematische  Grundhgen  der  Quantenmechanik. Berlin, 

Germany:  Springer, 1932. 
I141 M. von  Smoluchowski, The  Kinetic  Theory  of  Matter and 

Electricity. Leipzig  and  Berlin,  Germany, 1914. 
[ 151 k Einstein,  “On  the  theory of the  Brownian movement,”. 

Annalen derPhysik, vol. 19, pp. 371-381,  1906. 
161 N. Wiener,  “Differential  space,” J. Math, Phys., vol. 2, p. 131. 
171 k Schuster,” On the  investigation of  hidden  periodicities  with 

application to  a  supposed  26-day  period of meterological  phe- 
nomena,” Tew.  Magnet., vol.  3, pp. 13-41,  1898. 

181 G. U.  Yule,  “On  a  method of investigating  periodicities  in dis- 
turbed  series, with  special reference to  Wolfer’s  sunspot  num- 

191 E. k Robinson, Predictive  Decomposition of Time Series with 
bers,” Phil  Trans Roy. Soc London, A, vol. 226, pp. 267-298. 

Applications to Seismic Exploration, MIT Geophysical  Analysis 
Group, 1954; Reprinted  in Geophysics, voL 32, pp. 418-484, 
1967. 

[20]  -, An  Introduction  to  Infinitely  Many  Variates London, 

[ 2 1 ]  N. Wiener, “Generalized  harmonic  analysis,” Acta  Math., vol. 

[ 2 2 ]  A. Y. Khintchine,  “Korrelations  theorie der Stationiiren St* 
chastischen  Prozesse,”Math Ann., vol. 109, p. 604. 

[ 2 3 ]  N. Wiener, Cybemerics Cambridge, MA: MIT Press, 1948. 
[ 2 4 ]  -, Extrapolation,  Interpolation, and Smoothing  of  Station- 

ary Time  Series  with Engineering Applications, MIT NDRC 
Report, 1942, Reprinted, MIT Press, 1949. 

England:  Griffin, 1959, p. 109. 

55, pp. 117-258,  1930. 

Authorized licensed use limited to: University of Washington Libraries. Downloaded on May 28,2010 at 14:31:50 UTC from IEEE Xplore.  Restrictions apply. 



906 PROCEEDINGS OF THE  IEEE, VOL. 70, NO. 9, SEPTEMBER 1982 

[25 ]  -, The FourierZntegraL London, England: Cambridge, 1933. 
[26 ]  P. Dirac, Principles of  Quantum  Mechanics New York:  Oxford 

[ 271 0. Heaviside, Electrical Papers, vol. I and 11. New York: Mac- 
University Press, 1930. 

millan, 1892. 
[ 2 8 ]  J. von Neumann, “Uber Funktionen von Funktional opera- 

[ 291 N. Wiener, Z Am a Mathematician Cambridge, MA:  MIT Press, 
toren,”Ann Math., vol. 32, p. 191. 

[30 ]  N. Levinson, “A heuristic  exposition of Wiener’s mathematical 
1956. 

theory of  prediction and  Ntering,” Journal of Math and 

[ 31  ] N. Levinson, The Wiener RMS (root mean square) error cri te 
Physics, voL 26, pp. 110-1  19,  1947. 

rion in filter design and prediction, J. Math Phys., vol. 25, pp. 

[ 321 G.  P. Wadsworth, Short-Range and Extended Forecasting by 

[ 33)  H. R Seiwell, “The principles of time series analyses applied to 
Statistical  Methods, Air Weather Service, Washington, DC, 1948. 

ocean wave data,” in Proc Nut  Acad Sei., U.S.., voL 35, pp. 
518-528,  1949. 

[34 ]  J. W. Tukey,  “The sampling theory of power  spectrum esti- 
mates,” in Proc Symp.  AppL  Autocorr. AnaL Phys Prob. U.S. 
On Naval Res  (NAVEXOSP-725), 1949. Reprinted in J. 
Cycle  Res., voL 6, pp. 31-52,  1957. 

[ 3 5 ]  G.  P. Wadsworth, E. A. Robinson, J. G. Bryan, and P. M. Hur- 
ley,  “Detection of reflections on seismic records by linear 

I361 J. W. Tukey and R. W. Hamming, “Measuring noise color 1,” 
operators,” Geophys, vol. 18, pp. 539-586,  1953. 

1371 J.  W. Tukey, Measuring Noise  Color, Unpublished manuscript 
Bell Lab. Memo, 1949. 

prepared for distribution at  the  Institute of Radio Engineers 
Meeting, Nov. 1951. 

[38]  S. M. Simpson, Time  Series  Computations in FORTRAN and 
FAR Reading, MA: Addison-Wesley, 1966. 

[ 391 N. Wiener, Bull  Amer.  Math Soc., vol. 72, pp. 1-145. 
[ 4 0 ]  N. Wiener and P. Masani, “The  prediction theory of  multivariate 

( 4 1  ] -, “On bivariate stationary processes,” Theory  Prob.  AppL, 
stochastic processes,” Acta  Math., vol. 98, pp. 111-150,  1957. 

[ 4 2 ]  R A. Wiggins and E. A. Robinson, “Recursive solution to  the 
voL 4, pp. 300-308. 

multichannel  filtering  problem,” J. of  Geophys  Res., vol. 70, 

[ 4 3 ]  E. A. Robinson, Statistical  Communication and Detection  with 
Special Reference to Digital Data Processing of Radar and 
Seismic Signals London, England: Griffin, 1967. Reprinted 
with  new  title, Physical Applications  of  Stationary  Time  Series. 

[ 4 4 ]  J. W. Tukey, “An introduction to the calculations  of  numerical 
New York: Macmillan, 1980. 

spectrum analysis,” in Spectral  Analysis of Time  Series, 8. 
Harris, Ed. New York: Wiley, 1967, pp. 25-46. 

[ 4 5 ]  H. Press and J. W. Tukey, “Power spectral methods of analysis 

Syst Monogr., voL 2606,  1956. 
and their application to problems in airplane dynamics,” Bell 

I461 R B. Blackman and J. W. Tukey,  “The  measurement of power 
spectra from  the point of view of communications engineering,” 
Bell Sysf  Tech J., voL 33, pp. 185-282,  485-569,  1958; also 

[47]  J. W. Tukey,  “The  estimation  of power spectra and related 
New York: Dover, 1959. 

quantities,” On Numerical  Approximation, R. E. Langer, Ed. 
Madison, WI: University of Wisconsin Press, 1959, pp. 389-411. 

[ 4 8 ]  -, “An introduction to the measurement  of spectra,” in 
Probability and Statistics, U. Grenander,  Ed. New York: 

[ 4 9 ]  -, “Equalization  and pulse shaping  techniques  applied to the 
Wiley, 1959, pp. 300-330. 

determmation of the initial sense of Rayleigh waves,” in The 
Need of Fundamental Research in Seisnology, Appendix 9, 

[SO] B. P. Bogert, M. J. Healy, and J. W. Tukey,  “The  frequency anal- 
Department of State, Washington, DC, 1959, pp. 60-129. 

ysis of time series for  echoes;  cepstrum pseud-autocovariance, 
cross-cepstrum and shape-cracking,’’ in Time  Series  Analysis, 

[ 511 J. W. Tukey, “Discussion emphasizing the  connection between 
M. Rosenblatt, Ed. New York: Wiley, 1963, pp. 201-243. 

analysis of variance and spectrum analysis,” Technometrics, 

[ 5 2 ]  -, “The future of data analysis,” Ann  Math Statipt., vol. 

[ 531 -, ‘What can data analysis and statistics  offer today?” in 
Ocean Wave Spectra, Net. Aced Sci., Washington, DC, and 
RenticeHall, Englewood Cliffs, NJ, 1963. 

[ 541 -, “Uses of  numerical spectrum analysis in geophysics,” Bull 

[ 551 -, “Data analysis and the  frontiers of geophysics,” Science, 
Znt Statist. Znst., voL 39, pp. 267-307,  1965. 

[ 5 6 ]  W. J. Pierson and L. J.  Tick, “Stationary  random processes in 
voL 148, pp. 1283-1289,  1965. 

meteorology and oceanography,” BuU Znt Statist. Znst., vol. 

261-278,  1947. 

pp. 1885-1891,  1965. 

VOL 3, pp. 1-29, 1961. 

33, pp. 1-67,  1963. 

35, pp. 271-281,  1957. 

[ 571 N. R Goodman, “On the  joint estimation of the spectra, cospec- 
trum  and  quadrature  spectrum of a two-dimensional stationary 
Gaussian process,” Science Paper no. 10, Engineering Statistics 
Laboratory, New York University, New York, 1957. 

[ 5 8 ]  W. H. Munk and G. J. F. MacDonald, The  Rotation  of  the 
Earth. New York: Cambridge University Press, 1960. 

[ 591 M. J. Healy and B.  P. Bogert, “FORTRAN subroutines  for  time 
series analysis,” Commun Soc. Computing Machines, voL 6, pp. 

(601 E. C Bullard, F.  E. Ogelbay, W. H. Munk, and G.  R. Miller, A 
User’s Guide to BOMM, Institute of Geophysics and Planetary 
Physics, University of California Press, San Diego, 1966. 

[ 6 l ]  E. Parzen, Time  Series  Analysis Papers. San Francisco, CA: 
Holden-Day, 1967. 

[ 6 2 ]  E. A. Robinson, Multichannel Time  Series  Analysis  with Digital 
Computer Programs San Francisco, CA: Holden-Day, 1967. 

I631 C. W. J.  Granger, Spectral  Analysis of Economic  Time  Series 
Princeton, NJ: Princeton University Press, 1964. 

[ 6 4 ]  J. Neyman and E.  L. Scott, “Statistical  approach to  problems 
of cosmology,”J. Roy.  Statist Soc., Series B, vol. 20, pp. 1-43, 

[65 ]  U. Grenander and M. Rosenblatt, StatisticalAnalysis  OfStation- 
1958. 

[ 661 N. Wiener, Nonlinear  Problems in Random  Theory. Cambridge, 
ary  Time  Series New York: Wiley, 1957. 

MA:  MIT Ress, 1958. 
[ 6 7 ]  -, “Rhythm in physiology with particular  reference to en- 

cephalography,” Proc Roy.  Virchow  Med Soc., NY,  vol. 16, 
pp. 109-124,  1957. 

[ 6 8 ]  J. W. Cooley and J. W. Tukey,” An algorithm for the machine 
calculation of Fourier series,” Math  Comput., vol. 19, pp, 

(691 J. W. Cooley, P. A. W. Lewis, and P.  D. Welch, “Historical notes 
on the fast Fourier  transform,” ZEEE Trans  Audio  Electro- 

[ 7 0 ]  C. Bingham, M. D. Godfrey, and J. W. Tukey, “Modern tech- 
niques of power spectrum estimation,” ZEEE Trans Audio 
Electroacoust., vol. AU-15, pp. 56-66, 1967. 

[ 71 ] E. 0. Brigham and R E. Morrow, “The  fast  Fourier transform,” 

[ 721 IEEE Trans  Audio  Electroacoust (Special issue on Fourier 
ZEEE Spectrum, pp. 63-70, 1967. 

transform), B. P. Bogert and F. Van Veen, E&., vol. AU-15, 
June 1967 and voL AU-17, June 1969. 

[ 731 D. R Brillinger, Time Series: Data Analysis and Theory. New 
York:  Holt,  Rinehart, and Winston, Inc., 1974; revised edition 

[ 7 4 ]  D. R Brillinger and M. Rosenblatt, “Computation  and interpre- 
by Holden-Day, San Francisco, CA, 1980. 

tation of k-th order  spectra,” in Spectral  Analysis of Time  Series, 
B. Harris, Ed. New York: Wiley, 1967, pp. 189-232. 

[ 7 5 ]  I. Capon,  “Applications  of detection  and estimation theory to  
large array seismology,”Proc ZEEE, vol. 58,.pp. 760-770,197& 

[ 7 6 ]  Stochasftc  Point  Processes, P. A. W.  Le-, Ed. New York: 
Wiley, 1972. 

[77 ]  P. A. W. Lewis, A. M. Katcher, and A. H. We& “SASE IV-An 

ZBMRes  Resp., RC2365, 1969. 
improved program for  the statistical analysis of series of events,” 

32-34,  1963. 

297-301,  1965. 

acoust., v01. AU-15, pp. 76-79,  1967. 

[ 7 8 ]  Roc Symp. Walsh Functions, 1970-1973. 
[ 7 9 ]  A. Cohen and R H. Jones, “Regreasion on a random field,” 

[ 8 0 ]  J.  P.  Burg, Maximum  Entropy  Spectral  Analysis. Oklahoma 

[ 81 ] -, Maximum  Entropy  Spectral A ~ l y s i s .  Stanford, CA: Stan- 

[ 821 R T. Lacoss, “Data  adaptive  spectral analysis methods,” G e e  

I831 M. T. Silvia and E. A. Robinson, Deconvolution of Geophysical 
Time  Series in the  Exploration of Oil and Natuml  Gas Amster- 
dam,  The Netherlands: Ekevier, 1979. 

[841 F. Itakura  and S. Saito, “Analysis synthesis  telephony based on 

on  AcouJtlcs, (Tokyo, Japan), 1968. 
on the  maximumlikelihood  method,”  in Proc Sfxth Znf Cow.  

[ 85 I E. Parzen, “Modern empirical  spectral analysis,” Tech. Report 
N-12, Texas A&M Research Foundation, College Station, TX, 

(861 J. Makhoul, “Stable and efficient lattice  methods  for linear 
1980. 

prediction,” ZEEE Trans  Acoust.,  Speech, Signal Processing, 

[871 E. Parzen, “An approach to empirical time series,” J. Res  Not. 
Bur. Stand., VOL 68B, pp. 937-951,  1964. 

I881 -, “Some recent advances in time series modeling,” ZEEE 
Tram  Automat  Contr., voL AC-19, pp. 723-730,1974. 

[891 M. Priestley, Spectral  Analyak and Time Series, 2 volumes, 
London, England: Academic Press, 1981. 

I901 H. Wold, A Study in the Analysis of Stationary  Time  Series. 
Stockholm, Sweden: Stockholm University, 1938. 

[ 9  11  P. Whittle, Hypothesis Tesring in Time-Series Analysis. U p g  
sala, Sweden: Almqvist and Wiksells, 1951. 

J. Amer. Statist. Ass., vol. 64, pp. 1172-1182,  1969. 

City, OK, 1967. 

ford University, 1975. 

PhySiCS, VOL 36, Pp. 661-675,1971. 

voL ASSP-25, pp. 423-428,  1977. 

Authorized licensed use limited to: University of Washington Libraries. Downloaded on May 28,2010 at 14:31:50 UTC from IEEE Xplore.  Restrictions apply. 



PROCEEDINGS OF THE  IEEE, VOL. 70, NO. 9, SEPTEMBER 1982  907 

(921 -, The  statistical  analysis of a  seiche  record, J. Marine Res., 
voL 13, pp.  76-100, 1954. 

[93] G. Box and G. M. Jenkins, Time  Series  Analysis,  Forecasting, 
and Control Oakland, CA: Holden-Day,  1970. 

[94] H. Akaike,  “Power  spectrum  estimation  through  autoregressive 
model  fitting,” A n n  Z n s t  Statist Math., vol. 21, pp. 407-419, 

(951 -, “A  new  look  at  statistical model  identification,” ZEEE 
1969. 

[96] D.  G. Childers, Modern  Spechum  Analysis New York:  IEEE 
Trans Autom  Contr., vol.  AC-19,  pp. 716723,  1974. 

1971 S. Haykin, Nonlinear  Methods of Spectral  Analysis Berlin, 
Press, 1978. 

[98] h o c  of the RADC Spechum  Estimation  Workshop, Rome Air 
Germany:  Springer,  1979. 

[99] h o c  of the First  ASSP  Workshop on Spectral  Estimation, 
Development  Center, Griffw Air Force Base,  NY, 1979. 

[ l o o ]  T.  J. Ulrych and T.  N. Bishop, “Maximum entropy  spectral 
McMaster  University, Hamilton,  Ontario,  Canada,  1981. 

analysis and  autoregressive  decomposition,” Rev.  Geophys., 

[ 1011 P. R Gutowski, E. A. Robinson, and S. Treitel,  “Spectral esti- 
VOI. 13, pp. 183-200,  1975. 

vol. GE16, pp. 80-84,  1978.  Reprinted in D.  G. Childers, 
mation:  Fact or fiction,” ZEEE Trans  Geosci  Electronics, 

Modern  Spechum  Analysis New York:  IEEE Press, 1978. 

Spectral  Estimation:  An  Overdetermined  Rational 
Model  Equation  Approach 

JAMES A. CADzoW, SENIOR  MEMBER,  IEEE 

Al#frrret-In seeking rational  models  of  time series, the  concept  of 
approximating  second-order statistical relationships @e., the  Yule- 
Walker  equations) is often  explicitly or implicitly  invoked.  The  pa- 
rameters  of  the  hypothesized rational model are typically  selected so 
that  these relationships “best represent”  a set of autocodation lag 
estimates  computed  from  time series obmvations. One of  the objec- 
tives of this paper win be that of  establishing this fundamental ap- 
proach to the  generation  of  rational  models. 

An examination  of  many popular contempomy spectral estimation 
methods  reveals that the  parameters  of  a  hypothesized  rational  model 
are estimated  upon using a ‘‘minhd’’ set  of  YuleWalker  equation 
evaluations. This results in an undesired parameter  hypersensitivity 
and  a  subsequent  decrease  in  estimation  performance. To counteract 
this parameter  hypersensitivity,  the  concept  of using more  than the 
minirml number  of YuleWalker  equation  evaluations is herein ad- 
vocated. It is shown that by taking thii overdetermined parametric 
evaluation  approach,  a  reduction in data-induced  model  parameter 
hypersensitivity is obtained,  and  a  corresponding  improvement in 
modeling  performance results. Moreover,  upon  adapting  a singular 
value  decomposition  representation  of  an  extended-order  autocorrela- 
tion  matrix  estimate to this procedure, a desired  model order determi- 
nation  method is obtained  and  a  further significant improvement in 
modeling  performance is achieved. This approach  makes  possible  the 
generation  of  low-order highquality rational spectral estimates  from 
short data  lengths. 

I. INTRODUCTION 

H N A VARIETY of applications  such as found in  radar 
Doppler processing, .adaptive  filtering,  speech processing, 
underwater  acoustics, seismology, econometrics,  spectral 

estimation,  and  array processing, it is desired to estimate  the 
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statistical  characteristics of a wide-sense stationary  time 
series. More often  than  not, this required  characterization is 
embodied  in  the  time series’ autocorrelation Zag sequence as 
specified  by 

r,(n> = ~ { x ( n  + rn) ?(rn)} (1.1) 

in which E and - denote  the  operations of expectation  and 
complex  conjugation, respectively. From this definition,  the 
well-known property  that  the  autocorrelation lags  are complex 
conjugate  symmetric (i.e., r,(-n) = F,(n>) is readily established. 
We will automatically assume this property whenever  negative 
lag autocorrelation  elements  (or  their  estimates)  are  required. 

The  second-order  statistical  characterization as represented 
by the  autocorrelation  sequence may be given  an “equivalent” 
frequency-domain interpretation. Namely, upon  taking  the 
Fourier  transform of the  autocorrelation  sequence,  that is, 

S , ( e j w ) =   r x ( n ) e - i n w  (1.2) 

we obtain  the  associated power  spectral  density  function 
&(e iw)  in which the normalized  frequency variable w takes 
on values in [-n, n]. This function possesses a number of 
salient  properties  among which  are that  it is a positive  semi- 
definite,  symmetric (if the  time series is real valued),  and 
periodic function of a. This function is seen to have a  Fourier 
series interpretation  in which the  autocorrelation lags play the 
role of the  Fourier coefficients. It,  therefore, follows that 
these  coefficients may  be determined  from  the power spectral 
density function  through  the  Fourier series coefficient  integral 
expression 

00 

n=-w 

2n I, S , ( e i w )   e i w n   d w .  r x ( n )  = - I n  
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